欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 财经 > 创投人物 > 【esp32s3】esp-dl模型部署demo

【esp32s3】esp-dl模型部署demo

2025/2/25 1:27:49 来源:https://blog.csdn.net/qq_32939413/article/details/144455636  浏览:    关键词:【esp32s3】esp-dl模型部署demo

一个单片机部署手写数字识别的demo


源码:

# 别跑,给我star
git clone https://gitee.com/Shine_Zhang/esp32s3_dl_helloworld.git

功能:

网页绘制28x28手写数字,串口输入设备,串口打印输出10个数字的概率值,概率值最大的数字即为预测结果

环境要求:

  • esp-idf v4.4.3
  • esp32s3
  • PlatformIO
  • arduino-esp32s3
  • esp32s3最小系统板
根据串口输入手写数字预测
  • 输入:
    在这里插入图片描述
int16_t mnistData[784] = {  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255, 255, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255, 255,   0,   0,   0, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 127,   0,   0,   0,   0,   0,   0, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0};
  • 输出
Array size: 784
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 255 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 255 0 0 0 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 127 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 255 255 255 255 255 255 255 255 255 255 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
shape = (28, 28, 1)
shape = (26, 26, 32)
shape = (24, 24, 64)shape = (12, 12, 64)
shape = (9216)
shape = (1, 1, 9216)
shape = (1, 1, 10)
MNIST::forward: 488533 us
-6715, score:
score[1]:-5143, score[2]:8365, score[3]:712, score[4]:-12283, score[5]:-11454, score[6]:-13179, score[7]:1383, score[8]:-8591, score[9]:-7867, 
Prediction Result: 2

esp-dl模型手动量化转换

  • 参考:https://docs.espressif.com/projects/esp-dl/zh_CN/latest/esp32/tutorials/deploying-models.html
  • 下载docker环境:docker pull shinezhang66/esp_dl_env
  • 运行docker环境:docker run -d -p 8000:8000 -v D:/WorkSpace/docker/home:/app/workspace --name esp_dl_convert esp_dl_env:v2
 converter├── __pycache__│   └── optimizer.cpython-37.pyc├── convert.py # 转换脚本├── data│   ├── mnist_calib.pickle│   ├── mnist_test_data.pickle # 测试数据集│   ├── model.onnx # 待转换模型│   └── model_optimized.onnx # 中间产物├── inc│   ├── __pycache__│   │   └── optimizer.cpython-37.pyc│   ├── linux # 依赖esp-dl的库文件│   │   ├── calibrator.so│   │   ├── calibrator_acc.so│   │   └── evaluator.so│   ├── optimizer.py│   └── windows│       ├── calibrator.pyd│       ├── calibrator_acc.pyd│       └── evaluator.pyd├── mnist_coefficient.cpp # 转换后产物└── mnist_coefficient.hpp # 转换后产物

模型构建和训练

介绍

本项目是基于TensorFlow 2.x和Keras 3.x的手写数字识别模型,使用MNIST数据集进行训练和测试。

环境要求:
  • Python 3.x
  • TensorFlow 2.x
  • Keras 3.x
  • numpy
  • matplotlib
  • tf2onnx
  • onnxsim
模型
Model: "sequential"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩│ conv2d (Conv2D)(None, 26, 26, 32)320 │├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤│ conv2d_1 (Conv2D)(None, 24, 24, 64)18,496 │├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤│ max_pooling2d (MaxPooling2D)(None, 12, 12, 64)0 │├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤│ dropout (Dropout)(None, 12, 12, 64)0 │├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤│ flatten (Flatten)(None, 9216)0 │├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤│ dense (Dense)(None, 10)92,170 │└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘Total params: 110,986 (433.54 KB)Trainable params: 110,986 (433.54 KB)Non-trainable params: 0 (0.00 B)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词