欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 财经 > 产业 > 大模型(LLMs)强化学习—— PPO

大模型(LLMs)强化学习—— PPO

2025/4/29 14:58:44 来源:https://blog.csdn.net/hh051020/article/details/147595957  浏览:    关键词:大模型(LLMs)强化学习—— PPO

一、大语言模型RLHF中的PPO主要分哪些步骤?

二、举例描述一下 大语言模型的RLHF?

三、大语言模型RLHF 采样篇

  1. 什么是 PPO 中 采样过程?
  2. 介绍一下 PPO 中 采样策略?
  3. PPO 中 采样策略中,如何评估“收益”?

一、大语言模型RLHF中的PPO主要分哪些步骤?

大语言模型RLHF中的PPO 分为:

  1. 采样
  2. 反馈
  3. 学习

对应的实现逻辑如下:

二、举例描述一下 大语言模型的RLHF

大语言模型的RLHF,实际上是模型先试错再学习的过程。大语言模型的RLHF 好比是:老师与学生的角色

  1. 我们扮演着老师的角色,给出有趣的问题。模型则会像小学生一样,不断尝试给出答案。
  2. 模型会根据我们给出的问题,写出它觉得正确的答案,但是这些答案不一定是真的答案,需要我们结合正确答案进行打分。如果它表现得好,就会给予它高声赞扬;如果它表现不佳,我们则会给予它耐心的指导和反馈,帮助它不断改进,直到达到令人满意的水平。

三、大语言模型RLHF 采样篇

  1. 什么是 PPO 中 采样过程?
    PPO 中 采样过程:学生回答问题的过程,是模型根据提示(prompt)输出回答(response)的过程,或者说是模型自行生产训练数据的过程。
    eg:

  1. 介绍一下 PPO 中 采样策略?
    PPO 中 采样工作 通过一种策略(policy:policy由两个模型组成,一个叫做演员模型(Actor),另一个叫做评论家模型(Critic)。它们就像是学生大脑中的两种意识,一个负责决策,一个负责总结得失
    演员:我们想要训练出来的大模型。在用PPO训练它之前,它就是RLHF的第一步训练出来的SFT
    (Supervised Fine-Tuning)model。输入一段上下文,它将输出下一个token的概率分布。
    评论家:强化学习的辅助模型,输入一段上下文,它将输出下一个token的“收益”。
  2. PPO 中 采样策略中,如何评估收益

从下一个token开始,模型能够获得的总奖励(浮点数标量)。这里说的奖励包括Reward Model给出的奖励。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词