欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 养生 > PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测

PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测

2025/4/19 6:26:15 来源:https://blog.csdn.net/kjm13182345320/article/details/143457262  浏览:    关键词:PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测

PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测

目录

    • PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测,excel数据集,main是程序文件;
2.环境需要在MATLAB2018及以上版本运行;
3.多特征数据经过PCA主成分降维后输入支持向量机中,实现多输入分类预测,可以实现二分类及多分类预测。
注:数据和文件放在一个文件夹

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  读取数据
res = xlsread('data.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词