欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 美食 > 【LLM-agent】(task3)数据库对话Agent和RAG接入Agent

【LLM-agent】(task3)数据库对话Agent和RAG接入Agent

2025/2/5 23:31:10 来源:https://blog.csdn.net/qq_35812205/article/details/145077852  浏览:    关键词:【LLM-agent】(task3)数据库对话Agent和RAG接入Agent

note

  • 数据库对话Agent
  • RAG接入Agent

文章目录

  • note
  • 一、数据库对话Agent
  • 二、RAG接入Agent
  • Reference

一、数据库对话Agent

import os
from dotenv import load_dotenv# 加载环境变量
load_dotenv()
# 初始化变量
base_url = None
chat_model = None
api_key = None# 使用with语句打开文件,确保文件使用完毕后自动关闭
env_path = ".env.txt"
with open(env_path, 'r') as file:# 逐行读取文件for line in file:# 移除字符串头尾的空白字符(包括'\n')line = line.strip()# 检查并解析变量if "base_url" in line:base_url = line.split('=', 1)[1].strip().strip('"')elif "chat_model" in line:chat_model = line.split('=', 1)[1].strip().strip('"')elif "ZHIPU_API_KEY" in line:api_key = line.split('=', 1)[1].strip().strip('"')# 打印变量以验证
print(f"base_url: {base_url}")
print(f"chat_model: {chat_model}")
print(f"ZHIPU_API_KEY: {api_key}")from openai import OpenAI
client = OpenAI(api_key = api_key,base_url = base_url
)
print(client)def get_completion(prompt):response = client.chat.completions.create(model="glm-4-flash",  # 填写需要调用的模型名称messages=[{"role": "user", "content": prompt},],)return response.choices[0].message.content# 一、定义上个task的llm
from openai import OpenAI
from pydantic import Field  # 导入Field,用于Pydantic模型中定义字段的元数据
from llama_index.core.llms import (CustomLLM,CompletionResponse,LLMMetadata,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import List, Any, Generator# 定义OurLLM类,继承自CustomLLM基类
class OurLLM(CustomLLM):api_key: str = Field(default=api_key)base_url: str = Field(default=base_url)model_name: str = Field(default=chat_model)client: OpenAI = Field(default=None, exclude=True)  # 显式声明 client 字段def __init__(self, api_key: str, base_url: str, model_name: str = chat_model, **data: Any):super().__init__(**data)self.api_key = api_keyself.base_url = base_urlself.model_name = model_nameself.client = OpenAI(api_key=self.api_key, base_url=self.base_url)  # 使用传入的api_key和base_url初始化 client 实例@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""return LLMMetadata(model_name=self.model_name,)@llm_completion_callback()def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:response = self.client.chat.completions.create(model=self.model_name, messages=[{"role": "user", "content": prompt}])if hasattr(response, 'choices') and len(response.choices) > 0:response_text = response.choices[0].message.contentreturn CompletionResponse(text=response_text)else:raise Exception(f"Unexpected response format: {response}")@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> Generator[CompletionResponse, None, None]:response = self.client.chat.completions.create(model=self.model_name,messages=[{"role": "user", "content": prompt}],stream=True)try:for chunk in response:chunk_message = chunk.choices[0].deltaif not chunk_message.content:continuecontent = chunk_message.contentyield CompletionResponse(text=content, delta=content)except Exception as e:raise Exception(f"Unexpected response format: {e}")llm = OurLLM(api_key=api_key, base_url=base_url, model_name=chat_model)
# print(llm)
# 测试模型是否能正常回答
response = llm.stream_complete("你是谁?")
for chunk in response:print(chunk, end="", flush=True)# 三、定义embedding模型
def get_emb(api_key, text):from zhipuai import ZhipuAIclient = ZhipuAI(api_key=api_key)response = client.embeddings.create(model="embedding-3", #填写需要调用的模型编码input=[text],)one_emb = response.data[0].embeddingreturn one_embfrom langchain_community.embeddings import ZhipuAIEmbeddings
embedding = ZhipuAIEmbeddings(model="embedding-3", api_key=api_key
)# 三、 导入llama-index相关库
from llama_index.core.agent import ReActAgent  
from llama_index.core.tools import FunctionTool  
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings  
from llama_index.core.tools import QueryEngineTool   
from llama_index.core import SQLDatabase  
from llama_index.core.query_engine import NLSQLTableQueryEngine  
from sqlalchemy import create_engine, select  # 配置默认大模型  
Settings.llm = llm
Settings.embed_model = embedding# 三、创建数据库,并给数据库添加数据
import sqlite3
# 创建数据库
sqllite_path = 'llmdb.db'
con = sqlite3.connect(sqllite_path)# 创建表
sql = """
CREATE TABLE `section_stats` (`部门` varchar(100) DEFAULT NULL,`人数` int(11) DEFAULT NULL
);
"""
c = con.cursor()
cursor = c.execute(sql)
c.close()
con.close()# add data
con = sqlite3.connect(sqllite_path)
c = con.cursor()
data = [["专利部",22],["商标部",25],
]
for item in data:sql = """INSERT INTO section_stats (部门,人数) values('%s','%d')"""%(item[0],item[1])c.execute(sql)con.commit()
c.close()
con.close()# 四、创建数据库查询引擎
engine = create_engine("sqlite:///llmdb.db")  
# prepare data  
sql_database = SQLDatabase(engine, include_tables=["section_stats"])  
query_engine = NLSQLTableQueryEngine(  sql_database=sql_database,   tables=["section_stats"],   llm=Settings.llm  
)# 创建工具函数  
def multiply(a: float, b: float) -> float:  """将两个数字相乘并返回乘积。"""  return a * b  multiply_tool = FunctionTool.from_defaults(fn=multiply)  def add(a: float, b: float) -> float:  """将两个数字相加并返回它们的和。"""  return a + badd_tool = FunctionTool.from_defaults(fn=add)# 把数据库查询引擎封装到工具函数对象中  
staff_tool = QueryEngineTool.from_defaults(query_engine,name="section_staff",description="查询部门的人数。"  
)# 构建ReActAgent
agent = ReActAgent.from_tools([multiply_tool, add_tool, staff_tool], verbose=True)  
# 通过agent给出指令
response = agent.chat("请从数据库表中获取`专利部`和`商标部`的人数,并将这两个部门的人数相加!")  
print(response)
  • 分别使用section_staff工具从数据库get到两个部门人数
  • 使用add工具计算和:
    在这里插入图片描述

二、RAG接入Agent

如果是在mac本地需要下载faiss库:pip install faiss-cpu

import os
from dotenv import load_dotenv# 加载环境变量
load_dotenv()
# 初始化变量
base_url = None
chat_model = None
api_key = None# 使用with语句打开文件,确保文件使用完毕后自动关闭
env_path = ".env.txt"
with open(env_path, 'r') as file:# 逐行读取文件for line in file:# 移除字符串头尾的空白字符(包括'\n')line = line.strip()# 检查并解析变量if "base_url" in line:base_url = line.split('=', 1)[1].strip().strip('"')elif "chat_model" in line:chat_model = line.split('=', 1)[1].strip().strip('"')elif "ZHIPU_API_KEY" in line:api_key = line.split('=', 1)[1].strip().strip('"')# 打印变量以验证
print(f"base_url: {base_url}")
print(f"chat_model: {chat_model}")
print(f"ZHIPU_API_KEY: {api_key}")from openai import OpenAI
client = OpenAI(api_key = api_key,base_url = base_url
)
print(client)def get_completion(prompt):response = client.chat.completions.create(model="glm-4-flash",  # 填写需要调用的模型名称messages=[{"role": "user", "content": prompt},],)return response.choices[0].message.content# 一、定义上个task的llm
from openai import OpenAI
from pydantic import Field  # 导入Field,用于Pydantic模型中定义字段的元数据
from llama_index.core.llms import (CustomLLM,CompletionResponse,LLMMetadata,
)
from llama_index.core.embeddings import BaseEmbedding
from llama_index.core.llms.callbacks import llm_completion_callback
from typing import List, Any, Generator# 定义OurLLM类,继承自CustomLLM基类
class OurLLM(CustomLLM):api_key: str = Field(default=api_key)base_url: str = Field(default=base_url)model_name: str = Field(default=chat_model)client: OpenAI = Field(default=None, exclude=True)  # 显式声明 client 字段def __init__(self, api_key: str, base_url: str, model_name: str = chat_model, **data: Any):super().__init__(**data)self.api_key = api_keyself.base_url = base_urlself.model_name = model_nameself.client = OpenAI(api_key=self.api_key, base_url=self.base_url)  # 使用传入的api_key和base_url初始化 client 实例@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""return LLMMetadata(model_name=self.model_name,)@llm_completion_callback()def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:response = self.client.chat.completions.create(model=self.model_name, messages=[{"role": "user", "content": prompt}])if hasattr(response, 'choices') and len(response.choices) > 0:response_text = response.choices[0].message.contentreturn CompletionResponse(text=response_text)else:raise Exception(f"Unexpected response format: {response}")@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> Generator[CompletionResponse, None, None]:response = self.client.chat.completions.create(model=self.model_name,messages=[{"role": "user", "content": prompt}],stream=True)try:for chunk in response:chunk_message = chunk.choices[0].deltaif not chunk_message.content:continuecontent = chunk_message.contentyield CompletionResponse(text=content, delta=content)except Exception as e:raise Exception(f"Unexpected response format: {e}")llm = OurLLM(api_key=api_key, base_url=base_url, model_name=chat_model)
# print(llm)
# 测试模型是否能正常回答
response = llm.stream_complete("你是谁?")
for chunk in response:print(chunk, end="", flush=True)# 二、embedding模型
def get_emb(api_key, text):from zhipuai import ZhipuAIclient = ZhipuAI(api_key=api_key)response = client.embeddings.create(model="embedding-3", #填写需要调用的模型编码input=[text],)one_emb = response.data[0].embeddingreturn one_embfrom langchain_community.embeddings import ZhipuAIEmbeddings
embedding = ZhipuAIEmbeddings(model="embedding-3", api_key=api_key
)# 三、构建索引
# 从指定文件读取,输入为List
from llama_index.core import SimpleDirectoryReader,Document
text_file_path = "/Users/guomiansheng/Desktop/LLM/llm_app/wow-agent/docs/问答手册.txt"
documents = SimpleDirectoryReader(input_files=[text_file_path]).load_data()# 构建节点
from llama_index.core.node_parser import SentenceSplitter
transformations = [SentenceSplitter(chunk_size = 512)]from llama_index.core.ingestion.pipeline import run_transformations
nodes = run_transformations(documents, transformations=transformations)# 构建索引
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
from llama_index.core import StorageContext, VectorStoreIndexemb = embedding.get_text_embedding("你好呀呀")
vector_store = FaissVectorStore(faiss_index=faiss.IndexFlatL2(len(emb)))
storage_context = StorageContext.from_defaults(vector_store=vector_store)index = VectorStoreIndex(nodes = nodes,storage_context=storage_context,embed_model = embedding,
)# 四、构建问答引擎
# 构建检索器
from llama_index.core.retrievers import VectorIndexRetriever
# 想要自定义参数,可以构造参数字典
kwargs = {'similarity_top_k': 5, 'index': index, 'dimensions': len(emb)} # 必要参数
retriever = VectorIndexRetriever(**kwargs)# 构建合成器
from llama_index.core.response_synthesizers  import get_response_synthesizer
response_synthesizer = get_response_synthesizer(llm=llm, streaming=True)# 构建问答引擎
from llama_index.core.query_engine import RetrieverQueryEngine
engine = RetrieverQueryEngine(retriever=retriever,response_synthesizer=response_synthesizer,)# 五、提问
question = "What are the applications of Agent AI systems ?"
response = engine.query(question)
for text in response.response_gen:print(text, end="")# 六、把该rag作为agent的一个工具
# 配置查询工具
from llama_index.core.tools import QueryEngineTool
from llama_index.core.tools import ToolMetadata
query_engine_tools = [QueryEngineTool(query_engine=engine,metadata=ToolMetadata(name="RAG工具",description=("用于在原文中检索相关信息"),),),
]# 创建ReAct Agent
from llama_index.core.agent import ReActAgent
agent = ReActAgent.from_tools(query_engine_tools, llm=llm, verbose=True)# 让Agent完成任务
# response = agent.chat("请问商标注册需要提供哪些文件?")
response = agent.chat("What are the applications of Agent AI systems ?")
print(response)

在action时会使用RAG工具:
在这里插入图片描述

Reference

[1] 官方文档:https://docs.cloud.llamaindex.ai/
[2] https://github.com/datawhalechina/wow-agent
[3] https://www.datawhale.cn/learn/summary/86
[4] https://github.com/datawhalechina/wow-rag
[5] LangChain——Embedding 智谱AI

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com