欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 养生 > 基于用户的协同过滤算法推荐

基于用户的协同过滤算法推荐

2025/2/11 13:45:35 来源:https://blog.csdn.net/qq_52475404/article/details/145553350  浏览:    关键词:基于用户的协同过滤算法推荐

import numpy as np

计算用户之间的相似度(这里使用余弦相似度)

def cosine_similarity(user1, user2):
numerator = np.dot(user1, user2)
denominator = np.linalg.norm(user1) * np.linalg.norm(user2)
return numerator / denominator if denominator!= 0 else 0

获取与目标用户最相似的用户

def get_similar_users(target_user, user_item_matrix, top_n=5):
similarities = []
for i, user in enumerate(user_item_matrix):
if i!= target_user:
sim = cosine_similarity(user_item_matrix[target_user], user)
similarities.append((i, sim))
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_n]

预测目标用户对物品的评分

def predict_rating(target_user, item, user_item_matrix, similar_users):
numerator = 0
denominator = 0
for similar_user, similarity in similar_users:
if user_item_matrix[similar_user][item]!= 0:
numerator += similarity * user_item_matrix[similar_user][item]
denominator += similarity
return numerator / denominator if denominator!= 0 else 0

为目标用户生成推荐列表

def recommend_items(target_user, user_item_matrix, top_n=10):
similar_users = get_similar_users(target_user, user_item_matrix)
item_scores = []
for item in range(user_item_matrix.shape[1]):
if user_item_matrix[target_user][item] == 0:
score = predict_rating(target_user, item, user_item_matrix, similar_users)
item_scores.append((item, score))
item_scores.sort(key=lambda x: x[1], reverse=True)
return item_scores[:top_n]

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com