基于jieba分词的文本多分类
- 目标
- 数据准备
- 参数配置
- 数据处理
- 模型构建
- 主程序
- 测试与评估
- 测试结果
目标
本文基于给定的词表,将输入的文本基于jieba分词分割为若干个词,然后将词基于词表进行初步编码,之后经过网络层,输出在已知类别标签上的概率分布,从而实现一个简单文本的多分类。
数据准备
词表文件chars.txt
类别标签文件schema.json
{"停机保号": 0,"密码重置": 1,"宽泛业务问题": 2,"亲情号码设置与修改": 3,"固话密码修改": 4,"来电显示开通": 5,"亲情号码查询": 6,"密码修改": 7,"无线套餐变更": 8,"月返费查询": 9,"移动密码修改": 10,"固定宽带服务密码修改": 11,"UIM反查手机号": 12,"有限宽带障碍报修": 13,"畅聊套餐变更": 14,"呼叫转移设置": 15,"短信套餐取消": 16,"套餐余量查询": 17,"紧急停机": 18,"VIP密码修改": 19,"移动密码重置": 20,"彩信套餐变更": 21,"积分查询": 22,"话费查询": 23,"短信套餐开通立即生效": 24,"固话密码重置": 25,"解挂失": 26,"挂失": 27,"无线宽带密码修改": 28
}
训练集数据train.json训练集数据
验证集数据valid.json验证集数据
参数配置
config.py
# -*- coding: utf-8 -*-"""
配置参数信息
"""Config = {"model_path": "model_output","schema_path": "../data/schema.json","train_data_path": "../data/train.json","valid_data_path": "../data/valid.json","vocab_path":"../chars.txt","max_length": 20,"hidden_size": 128,"epoch": 10,"batch_size": 32,"optimizer": "adam","learning_rate": 1e-3,
}
数据处理
loader.py
# -*- coding: utf-8 -*-import json
import re
import os
import torch
import random
import jieba
import numpy as np
from torch.utils.data import Dataset, DataLoader"""
数据加载
"""class DataGenerator:def __init__(self, data_path, config):self.config = configself.path = data_pathself.vocab = load_vocab(config["vocab_path"])self.config["vocab_size"] = len(self.vocab)self.schema = load_schema(config["schema_path"])self.config["class_num"] = len(self.schema)self.load()def load(self):self.data = []with open(self.path, encoding="utf8") as f:for line in f:line = json.loads(line)#加载训练集if isinstance(line, dict):questions = line["questions"]label = line["target"]label_index = torch.LongTensor([self.schema[label]])for question in questions:input_id = self.encode_sentence(question)input_id = torch.LongTensor(input_id)self.data.append([input_id, label_index])else:assert isinstance(line, list)question, label = lineinput_id = self.encode_sentence(question)input_id = torch.LongTensor(input_id)label_index = torch.LongTensor([self.schema[label]])self.data.append([input_id, label_index])returndef encode_sentence(self, text):input_id = []if self.config["vocab_path"] == "words.txt":for word in jieba.cut(text):input_id.append(self.vocab.get(word, self.vocab["[UNK]"]))else:for char in text:input_id.append(self.vocab.get(char, self.vocab["[UNK]"]))input_id = self.padding(input_id)return input_id#补齐或截断输入的序列,使其可以在一个batch内运算def padding(self, input_id):input_id = input_id[:self.config["max_length"]]input_id += [0] * (self.config["max_length"] - len(input_id))return input_iddef __len__(self):return len(self.data)def __getitem__(self, index):return self.data[index]#加载字表或词表
def load_vocab(vocab_path):token_dict = {}with open(vocab_path, encoding="utf8") as f:for index, line in enumerate(f):token = line.strip()token_dict[token] = index + 1 #0留给padding位置,所以从1开始return token_dict#加载schema
def load_schema(schema_path):with open(schema_path, encoding="utf8") as f:return json.loads(f.read())#用torch自带的DataLoader类封装数据
def load_data(data_path, config, shuffle=True):dg = DataGenerator(data_path, config)dl = DataLoader(dg, batch_size=config["batch_size"], shuffle=shuffle)return dlif __name__ == "__main__":from config import Configdg = DataGenerator("valid_tag_news.json", Config)print(dg[1])
主要实现一个自定义数据加载器 DataGenerator,用于加载和处理文本数据。它通过词汇表和标签映射将输入文本转化为索引序列,并进行补齐或截断。
模型构建
model.py
# -*- coding: utf-8 -*-import torch
import torch.nn as nn
from torch.optim import Adam, SGD
"""
建立网络模型结构
"""class TorchModel(nn.Module):def __init__(self, config):super(TorchModel, self).__init__()hidden_size = config["hidden_size"]vocab_size = config["vocab_size"] + 1max_length = config["max_length"]class_num = config["class_num"]self.embedding = nn.Embedding(vocab_size, hidden_size, padding_idx=0)self.layer = nn.Linear(hidden_size, hidden_size)self.classify = nn.Linear(hidden_size, class_num)self.pool = nn.AvgPool1d(max_length)self.activation = torch.relu #relu做激活函数self.dropout = nn.Dropout(0.1)self.loss = nn.functional.cross_entropy #loss采用交叉熵损失#当输入真实标签,返回loss值;无真实标签,返回预测值def forward(self, x, target=None):x = self.embedding(x) #input shape:(batch_size, sen_len)x = self.layer(x) #input shape:(batch_size, sen_len, input_dim)x = self.pool(x.transpose(1,2)).squeeze() #input shape:(batch_size, sen_len, input_dim)predict = self.classify(x) #input shape:(batch_size, input_dim)if target is not None:return self.loss(predict, target.squeeze())else:return predictdef choose_optimizer(config, model):optimizer = config["optimizer"]learning_rate = config["learning_rate"]if optimizer == "adam":return Adam(model.parameters(), lr=learning_rate)elif optimizer == "sgd":return SGD(model.parameters(), lr=learning_rate)
定义了一个神经网络模型 TorchModel
,继承自 nn.Module
,用于文本分类任务。模型包括嵌入层、线性层、平均池化层和分类层,使用 ReLU 激活函数和 Dropout 防止过拟合。前向传播根据输入返回预测值或损失值(若提供标签)。choose_optimizer
函数根据配置选择 Adam 或 SGD 优化器,并设置学习率。模型通过交叉熵损失进行训练。
主程序
main.py
# -*- coding: utf-8 -*-import torch
import os
import random
import os
import numpy as np
import loggingfrom config import Config
from model import TorchModel, choose_optimizer
from evaluate import Evaluator
from loader import load_data, load_schemalogging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)"""
模型训练主程序
"""def main(config):#创建保存模型的目录if not os.path.isdir(config["model_path"]):os.mkdir(config["model_path"])#加载训练数据train_data = load_data(config["train_data_path"], config)#加载模型model = TorchModel(config)# 标识是否使用gpucuda_flag = torch.cuda.is_available()if cuda_flag:logger.info("gpu可以使用,迁移模型至gpu")model = model.cuda()#加载优化器optimizer = choose_optimizer(config, model)#加载效果测试类evaluator = Evaluator(config, model, logger)#训练for epoch in range(config["epoch"]):epoch += 1model.train()logger.info("epoch %d begin" % epoch)train_loss = []for index, batch_data in enumerate(train_data):optimizer.zero_grad()if cuda_flag:batch_data = [d.cuda() for d in batch_data]input_id, labels = batch_data #输入变化时这里需要修改,比如多输入,多输出的情况loss = model(input_id, labels)train_loss.append(loss.item())if index % int(len(train_data) / 2) == 0:logger.info("batch loss %f" % loss)loss.backward()# print(loss.item())# print(model.classify.weight.grad)optimizer.step()logger.info("epoch average loss: %f" % np.mean(train_loss))evaluator.eval(epoch)model_path = os.path.join(config["model_path"], "epoch_%d.pth" % epoch)torch.save(model.state_dict(), model_path)return model, train_datadef ask(model, question):input_id = train_data.dataset.encode_sentence(question)model.eval()model = model.cpu()cls = torch.argmax(model(torch.LongTensor([input_id])))schemes = load_schema(Config["schema_path"])ans = ""for name, val in schemes.items():if val == cls:ans = namereturn ansif __name__ == "__main__":model, train_data = main(Config)print(ask(model, "积分是怎么积的"))while True:question = input("请输入问题:")res = ask(model, question)print("命中问题:", res)print("-----------")
实现一个基于 PyTorch 的文本分类模型的训练和推理过程。首先,通过 main
函数创建模型训练的主流程。代码首先检查是否有 GPU 可用,并将模型迁移至 GPU(如果可用)。然后加载训练数据、模型、优化器以及效果评估类。训练过程中,模型使用交叉熵损失函数计算训练误差并进行反向传播更新参数,每个 epoch 后记录并输出平均损失。同时,训练结束后,将模型保存至指定路径。
在训练完成后,ask
函数用于推理,输入问题并通过模型进行预测。它首先将输入问题转化为模型所需的格式,然后利用训练好的模型进行分类,最后返回匹配的答案。整个程序支持通过命令行输入问题,模型根据训练结果给出对应的答案。
在主程序中,首先进行一次初始化训练,之后进入循环,可以持续输入问题并得到模型的预测答案。
测试与评估
evaluate.py
# -*- coding: utf-8 -*-
import torch
from loader import load_data"""
模型效果测试
"""class Evaluator:def __init__(self, config, model, logger):self.config = configself.model = modelself.logger = loggerself.valid_data = load_data(config["valid_data_path"], config, shuffle=False)self.stats_dict = {"correct":0, "wrong":0} #用于存储测试结果def eval(self, epoch):self.logger.info("开始测试第%d轮模型效果:" % epoch)self.stats_dict = {"correct":0, "wrong":0} #清空前一轮的测试结果self.model.eval()for index, batch_data in enumerate(self.valid_data):if torch.cuda.is_available():batch_data = [d.cuda() for d in batch_data]input_id, labels = batch_data #输入变化时这里需要修改,比如多输入,多输出的情况with torch.no_grad():pred_results = self.model(input_id) #不输入labels,使用模型当前参数进行预测self.write_stats(labels, pred_results)self.show_stats()returndef write_stats(self, labels, pred_results):assert len(labels) == len(pred_results)for true_label, pred_label in zip(labels, pred_results):pred_label = torch.argmax(pred_label)if int(true_label) == int(pred_label):self.stats_dict["correct"] += 1else:self.stats_dict["wrong"] += 1returndef show_stats(self):correct = self.stats_dict["correct"]wrong = self.stats_dict["wrong"]self.logger.info("预测集合条目总量:%d" % (correct +wrong))self.logger.info("预测正确条目:%d,预测错误条目:%d" % (correct, wrong))self.logger.info("预测准确率:%f" % (correct / (correct + wrong)))self.logger.info("--------------------")return
定义一个 Evaluator
类,用于评估深度学习模型在验证集上的表现。Evaluator
初始化时接受配置文件、模型和日志记录器,并加载验证数据。eval
方法用于进行模型评估,在每轮评估开始时清空统计信息,设置模型为评估模式,然后通过遍历验证数据集进行预测。预测结果通过 write_stats
方法与真实标签进行比对,统计正确和错误的预测条目。最后,show_stats
方法输出总预测条目数、正确条目数、错误条目数以及准确率。该类的作用是帮助监控模型在验证集上的性能,便于调整和优化模型。
测试结果
请输入问题:在官网上如何修改移动密码
命中问题: 移动密码修改
-----------
请输入问题:我想多加一个号码作为亲情号
命中问题: 亲情号码设置与修改
-----------
请输入问题:我已经交足了话费请立即帮我开机
命中问题: 话费查询
-----------
请输入问题:密码想换一下
命中问题: 密码修改