欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 时评 > 如何使用OPENAI的Whisper功能进行音频字母提取功能

如何使用OPENAI的Whisper功能进行音频字母提取功能

2025/2/25 21:38:33 来源:https://blog.csdn.net/weixin_41227420/article/details/145678100  浏览:    关键词:如何使用OPENAI的Whisper功能进行音频字母提取功能

首先你可以使用 Python 中的 requests 库来下载该音频文件,然后通过 open() 打开该文件并传递给 OpenAI Whisper API。

完整代码如下:

  1. 安装需要的库:
pip install openai requests
  1. Python 代码:
OPENAI_API_KEY= "your openai_api_key"client = OpenAI(api_key=OPENAI_API_KEY)response = requests.get(output_url)result = []with tempfile.NamedTemporaryFile(delete=False, suffix=".wav", dir=".") as temp_audio_file:temp_audio_file.write(response.content)temp_audio_file_path = temp_audio_file.nameprint(f"Audio file saved to temporary file: {temp_audio_file_path}")# 打开音频文件并进行转录with open(temp_audio_file_path, "rb") as audio_file:transcription = client.audio.transcriptions.create(file=audio_file,model="whisper-1",response_format="verbose_json",timestamp_granularities=["word"])for word_info in transcription.words:word = word_info.wordtask_start_time = word_info.starttask_end_time = word_info.endword_task = {"word": word,"start_time": task_start_time,"end_time": task_end_time}result.append(word_task)logger.info(f"打印结果:{result}")

1. 客户端初始化

client = OpenAI(api_key=OPENAI_API_KEY)
  • client 是一个与 OpenAI API 交互的客户端实例。api_key 是你用来认证的密钥,这里应该替换为你的 OpenAI API 密钥。
  • OpenAI 是 OpenAI 提供的 Python 客户端,可以用来访问 GPT-3、Whisper、DALL-E 等服务。

2. 下载音频文件

response = requests.get(output_url)
  • 通过 requests.get(output_url) 发送 HTTP GET 请求,下载指定 URL(output_url)的内容(应该是一个音频文件)。
  • response.content 获取的是该音频文件的二进制内容。

3. 保存为临时音频文件

with tempfile.NamedTemporaryFile(delete=False, suffix=".wav", dir=".") as temp_audio_file:     temp_audio_file.write(response.content) temp_audio_file_path = temp_audio_file.name print(f"Audio file saved to temporary file: {temp_audio_file_path}")
  • tempfile.NamedTemporaryFile 用于创建一个临时文件,并指定它的后缀为 .wav,表示这个临时文件将是一个 WAV 格式的音频文件。
  • delete=False 表示临时文件在关闭时不会自动删除(稍后手动删除)。
  • temp_audio_file.write(response.content) 将从 response 中下载的音频数据写入临时文件。
  • temp_audio_file.name 获取临时文件的路径,并将其存储到 temp_audio_file_path 变量中。
  • print 输出临时文件的路径,方便调试。

4. 使用 OpenAI Whisper 进行转录

with open(temp_audio_file_path, "rb") as audio_file:transcription = client.audio.transcriptions.create( file=audio_file, model="whisper-1", response_format="verbose_json", timestamp_granularities=["word"] )
  • 这部分代码打开刚刚创建的临时音频文件。
  • client.audio.transcriptions.create 调用 Whisper 模型进行音频转录:
    • file=audio_file:传递打开的音频文件。
    • model="whisper-1":使用 Whisper 模型进行音频转录。
    • response_format="verbose_json":指定返回的结果为详细的 JSON 格式。
    • timestamp_granularities=["word"]:指定返回每个单词的时间戳(开始时间和结束时间)。

5. 处理转录结果

for word_info in transcription.words: word = word_info.word task_start_time = word_info.start task_end_time = word_info.end word_task = { "word": word, "start_time": task_start_time, "end_time": task_end_time }         result.append(word_task)
  • transcription.words 是一个包含每个单词信息的列表。每个 word_info 包含:
    • word:转录出的单词。
    • start:该单词的开始时间(单位通常是秒)。
    • end:该单词的结束时间。
  • word_task 是一个字典,用来存储每个单词的信息:包括单词、开始时间和结束时间。
  • result.append(word_task) 将每个单词的信息添加到 result 列表中。

总结

  1. 下载音频文件:通过 requests 库从指定 URL 下载音频文件并保存为临时 .wav 文件。
  2. 使用 Whisper 进行转录:通过 OpenAI 的 Whisper 模型对音频进行转录,获取每个单词的开始和结束时间。
  3. 存储转录结果:将每个单词的时间戳信息存储到 result 列表中。
  4. 打印结果:通过日志记录器将转录结果打印出来。

可能的应用场景

  • 音频转录服务(如字幕生成、语音识别)。
  • 对音频进行更详细的时间戳标记,用于后续处理(如视频编辑、语音分析等)。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词