欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 新车 > 小白零基础学数学建模应用系列(五):任务分配问题优化与求解

小白零基础学数学建模应用系列(五):任务分配问题优化与求解

2024/10/25 21:33:03 来源:https://blog.csdn.net/weixin_46211269/article/details/141200390  浏览:    关键词:小白零基础学数学建模应用系列(五):任务分配问题优化与求解

文章目录

    • 一. 分配问题
      • 1.1 问题背景
      • 1.2 假设条件
      • 1.3 问题要求
      • 1.4 数学建模
    • 二. 实际案例
      • 2.1 问题背景
      • 2.2 假设条件
      • 2.3 问题要求
      • 2.4 模型建立
      • 2.5 求解代码
      • 2.6 结果分析
        • 2.6.1 分配方案的解释
        • 2.6.2 总时间的优化
        • 2.6.3 潜在的现实应用

一. 分配问题

1.1 问题背景

分配问题(Assignment Problem)是运筹学中的经典问题之一,广泛应用于生产调度、任务分配、人员调度等领域。其核心思想是将一定数量的资源合理分配到一定数量的任务中,以达到最优的效果。在实际应用中,资源和任务的分配通常是基于某种目标,例如最小化总成本、时间或最大化总效率等。

在本文中,我们研究的是一个典型的分配问题:设有 (m) 件工作和 (m) 个人员,每个人只能完成一项工作,且每项工作只能分配给一个人。已知第 (i) 个人完成第 (j) 项工作的时间(或费用)为 c i j c_{ij} cij,我们的目标是如何分配这些工作,使得总时间(或总费用)最少。

1.2 假设条件

在求解这个问题之前,我们需要作出以下假设条件:

  1. 工作数量与人员数量相同:即有 (m) 件工作和 (m) 个人员,确保每个工作都有人负责且每个人只负责一项工作。
  2. 每个人都有能力完成分配的工作:假设每个任务对于被分配的人员都是可行的,即每个 c i j c_{ij}\ cij  是一个有限值。
  3. 工作独立性:各项工作之间是独立的,完成某一项工作所需的时间或费用不会因其他工作的分配而改变。
  4. 分配不可拆分:每项工作只能由一个人完成,不能将工作拆分给多个人员。

1.3 问题要求

根据上述背景和假设,问题的要求可以表述为:

给定一个 m × m m \times m\ m×m  的矩阵 C = [ c i j ] C = [c_{ij}] C=[cij],其中 c i j c_{ij} cij 表示第 (i) 个人完成第 (j) 项工作的时间(或费用)。需要找到一个分配方案,使得总的完成时间(或总费用)最小化。

好的,我们将基于你提供的截图内容,采用0-1规划来建立模型,并给出相应的求解代码。

1.4 数学建模

首先,我们定义决策变量:

x i j = { 1 如果第  i 个人被分配做第  j 件工作, 0 否则。 x_{ij} = \begin{cases} 1 & \text{如果第 } i \text{ 个人被分配做第 } j \text{ 件工作,}\\ 0 & \text{否则。} \end{cases} xij={10如果第 i 个人被分配做第 j 件工作,否则。

目标函数为:

minimize  z = ∑ i = 1 m ∑ j = 1 m c i j x i j \text{minimize } z = \sum_{i=1}^{m} \sum_{j=1}^{m} c_{ij}x_{ij} minimize z=i=1mj=1mcijxij

约束条件为:

∑ j = 1 m x i j = 1 , i = 1 , 2 , … , m \sum_{j=1}^{m} x_{ij} = 1, \quad i = 1, 2, \dots, m j=1mxij=1,i=1,2,,m

∑ i = 1 m x i j = 1 , j = 1 , 2 , … , m \sum_{i=1}^{m} x_{ij} = 1, \quad j = 1, 2, \dots, m i=1mxij=1,j=1,2,,m

x i j ∈ { 0 , 1 } , i , j = 1 , 2 , … , m x_{ij} \in \{0, 1\}, \quad i, j = 1, 2, \dots, m xij{0,1},i,j=1,2,,m

二. 实际案例

为了更好地理解和展示该问题的实际应用,我们将假设一个具体的场景,并给出相应的参数值用于建模和求解。

2.1 问题背景

假设某公司正在进行一个项目,需要分配任务给不同的员工。公司有4个任务和4名员工,每个员工完成每个任务所需的时间(或成本)是已知的。公司希望通过合理分配任务,使得所有任务的总完成时间最短。

具体任务与员工的时间表如下:

  • 任务A、B、C、D
  • 员工1、2、3、4

下表为每个员工完成每项任务所需的时间(单位:小时):

任务A任务B任务C任务D
员工113476
员工211154
员工36728
员工41359

2.2 假设条件

我们沿用之前提到的假设条件:

  1. 公司有4个任务和4名员工,确保每个任务都能被完成,且每个员工只负责一项任务。
  2. 每个员工都有能力完成分配给他的任何任务,时间表中的数值表示了完成任务所需的时间。
  3. 各项任务之间是独立的,完成某一项任务的时间不会因其他任务的分配而改变。
  4. 每个任务只能由一个员工完成,不能将任务拆分给多个人员。

2.3 问题要求

基于上述背景,问题的要求是找到一个最优的任务分配方案,使得所有任务的总完成时间最短。

2.4 模型建立

我们可以根据上表的具体数据构建0-1规划模型。具体来说,设定 ( m = 4 ) 和 ( n = 4 )(即4个任务和4名员工),然后我们将每个员工完成每项任务的时间用一个4x4的矩阵表示:

c i j = ( 13 4 7 6 1 11 5 4 6 7 2 8 1 3 5 9 ) c_{ij} = \begin{pmatrix} 13 & 4 & 7 & 6 \\ 1 & 11 & 5 & 4 \\ 6 & 7 & 2 & 8 \\ 1 & 3 & 5 & 9 \\ \end{pmatrix} cij= 131614117375256489

目标函数为:

minimize  z = ∑ i = 1 4 ∑ j = 1 4 c i j x i j \text{minimize } z = \sum_{i=1}^{4} \sum_{j=1}^{4} c_{ij}x_{ij} minimize z=i=14j=14cijxij

约束条件为:

∑ j = 1 4 x i j = 1 , i = 1 , 2 , 3 , 4 \sum_{j=1}^{4} x_{ij} = 1, \quad i = 1, 2, 3, 4 j=14xij=1,i=1,2,3,4

∑ i = 1 4 x i j = 1 , j = 1 , 2 , 3 , 4 \sum_{i=1}^{4} x_{ij} = 1, \quad j = 1, 2, 3, 4 i=14xij=1,j=1,2,3,4

x i j ∈ { 0 , 1 } , i , j = 1 , 2 , 3 , 4 x_{ij} \in \{0, 1\}, \quad i, j = 1, 2, 3, 4 xij{0,1},i,j=1,2,3,4

2.5 求解代码

我们Python代码进行求解:

import pulp# 定义cij矩阵,表示第i个人完成第j项工作的时间
c = [[13, 4, 7, 6],[1, 11, 5, 4],[6, 7, 2, 8],[1, 3, 5, 9]
]# 初始化问题
prob = pulp.LpProblem("Assignment_Problem", pulp.LpMinimize)# 决策变量定义
x = pulp.LpVariable.dicts("x", (range(4), range(4)), cat='Binary')# 目标函数
prob += pulp.lpSum([c[i][j] * x[i][j] for i in range(4) for j in range(4)])# 约束条件:每个人只能被分配到一项工作
for i in range(4):prob += pulp.lpSum([x[i][j] for j in range(4)]) == 1# 约束条件:每项工作只能分配给一个人
for j in range(4):prob += pulp.lpSum([x[i][j] for i in range(4)]) == 1# 求解问题
prob.solve()# 输出结果
print("Optimal Assignment:")
for i in range(4):for j in range(4):if x[i][j].value() == 1:print(f"Person {i+1} assigned to Job {j+1} with time {c[i][j]} hours")print("Total minimum time:", pulp.value(prob.objective), "hours")

运行结果如下:

Optimal Assignment:
Person 1 assigned to Job 2 with time 4 hours
Person 2 assigned to Job 4 with time 4 hours
Person 3 assigned to Job 3 with time 2 hours
Person 4 assigned to Job 1 with time 1 hours
Total minimum time: 11.0 hours

2.6 结果分析

通过运行线性规划模型,我们得到了最优的任务分配方案,目标是使所有任务的总完成时间最短。最终的最优分配结果如下:

  • 员工1 被分配完成 任务B,所需时间为 4小时
  • 员工2 被分配完成 任务D,所需时间为 4小时
  • 员工3 被分配完成 任务C,所需时间为 2小时
  • 员工4 被分配完成 任务A,所需时间为 1小时

总的最小完成时间为 11小时

2.6.1 分配方案的解释
  • 员工1 被分配到 任务B,所需时间为4小时。在给定的时间矩阵中,员工1的其他任务选项中时间更长(13小时、7小时、6小时),因此选择4小时的任务B是最佳选择。

  • 员工2 被分配到 任务D,所需时间为4小时。虽然员工2完成任务A仅需1小时,但由于任务A已经被分配给了更合适的员工4,员工2只能选择任务D。相比其他选项(11小时和5小时),选择任务D的4小时是最优的。

  • 员工3 被分配到 任务C,所需时间为2小时。对于员工3来说,这是所有可选任务中时间最短的,因此是最优的选择。

  • 员工4 被分配到 任务A,所需时间为1小时。对于员工4来说,任务A是耗时最短的,尽管其他任务的时间相对较长(3小时、5小时、9小时),因此这是最佳分配。

2.6.2 总时间的优化

该分配方案达到了最小化总时间的目标,总时间为 11小时。相比于其他可能的分配组合,这个方案有效地利用了每个员工的优势,并合理地分配了任务。以下几点进一步说明了方案的优越性:

  • 最小化完成时间:通过合理分配,所有任务的完成时间被压缩到最小。这确保了项目在最短的时间内完成,提高了整体效率。

  • 任务和资源的匹配:每个员工都被分配到最适合的任务,这不仅降低了总完成时间,还有效减少了可能的资源浪费和时间超支。

2.6.3 潜在的现实应用

在实际应用中,这种任务分配方法可以用于多个场景,比如生产调度、人力资源管理、项目管理等。在这些场景中,合理的资源分配不仅能够节省时间,还能提高整体效率和生产力。

总之,本文所提供的分配方案和分析展示了如何通过线性规划技术,优化资源分配,解决复杂的现实问题。这种方法简单有效,具有广泛的应用前景。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com