欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 教育 > 锐评 > 【项目实战】基于 LLaMA-Factory 通过 LoRA 微调 Qwen2

【项目实战】基于 LLaMA-Factory 通过 LoRA 微调 Qwen2

2025/3/12 9:54:52 来源:https://blog.csdn.net/pdsu_Zhe/article/details/143818479  浏览:    关键词:【项目实战】基于 LLaMA-Factory 通过 LoRA 微调 Qwen2

【项目实战】基于 LLaMAFactory 通过 LoRA 微调 Qwen2

  • 一、项目介绍
  • 二、环境准备
    • 1、环境准备
    • 2、安装LLaMa-Factory
    • 3、准备模型数据集
      • 3.1 模型准备
      • 3.2 数据集准备
  • 三、微调
    • 1、启动webui
    • 2、选择参数
    • 3、训练
  • 四、测试
  • 五、总结

一、项目介绍

在这里插入图片描述

        LLaMA-Factory是一个由北京航空航天大学的郑耀威开发的开源框架,作为一个功能强大且高效的大模型微调框架,通过其用户友好的界面和丰富的功能特性,为开发者提供了极大的便利。
项目官网:https://www.llamafactory.cn/
Github:https://github.com/hiyouga/LLaMA-Factory


二、环境准备

1、环境准备

  • Python 3.10.9
  • NVIDIA GeForce GTX 1650
  • CUDA和cuDNN

2、安装LLaMa-Factory

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

        进入项目目录,安装必要的Python依赖库。可以使用以下命令:

cd LLaMA-Factory
pip install -e ".[torch,metrics]"
#截止2024.11.16,github拉取的最新版本的requirements.txt
transformers>=4.41.2,<=4.46.1
datasets>=2.16.0,<=3.1.0
accelerate>=0.34.0,<=1.0.1
peft>=0.11.1,<=0.12.0
trl>=0.8.6,<=0.9.6
gradio>=4.0.0,<5.0.0
pandas>=2.0.0
scipy
einops
sentencepiece
tiktoken
protobuf
uvicorn
pydantic
fastapi
sse-starlette
matplotlib>=3.7.0
fire
packaging
pyyaml
numpy<2.0.0
av

3、准备模型数据集

3.1 模型准备

        这里我们使用 Qwen2-0.5B 模型进行微调,首先下载模型,这里如果无法从Hugging Face上拉取的话,可以从国内模型库魔塔社区拉去,没有速度限制。

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen2-0.5B',cache_dir="model/Qwen")

3.2 数据集准备

        LLaMA-Factory 内置了一些数据集,本次就使用内置的 identity 数据集,用于修改模型的自我意识,数据集格式:

#文件地址 LLaMA-Factory-main\data\identity.json
{"instruction": "Who are you?","input": "","output": "I am {{name}} an AI assistant developed by {{author}}. How can I assist you today?"},{"instruction": "What is your name?","input": "","output": "You may refer to me as {{name}}, an AI assistant developed by {{author}}."},{"instruction": "Do you have a name?","input": "","output": "As an AI assistant developed by {{author}}, I got the name {{name}}."},

        对于这个数据集进行大量训练后,会修改模型的自我意识,比如修改前:我的名字是通义千问;修改后:我的名字是{{name}}。


三、微调

1、启动webui

        启动webui:llamafactory-cli webui,出现如下提示和页面表示启动成功:

(torch3) D:\AIProject\LLaMA-Factory-main>llamafactory-cli webui
Running on local URL:  http://0.0.0.0:7860To create a public link, set `share=True` in `launch()`.

在这里插入图片描述


2、选择参数

        主要选择:模型、训练数据集、训练参数(此处不多介绍,按照下图选择)

在这里插入图片描述


3、训练

        点击训练,等待即可,训练结束后会出现训练完毕字样,并且会显示出Loss曲线。
在这里插入图片描述

模型训练过程

在这里插入图片描述


四、测试

        在模型训练完成后,可以通过Evaluate & Predict(通过评估数据集评估性能)、Chat(直接与模型对话)。此处选择后者,更直观的展示模型训练效果。
        模型依旧选择基座模型,检查点选择训练完模型保存的地址,点击加载模型,即可开始与模型对话。

在这里插入图片描述


五、总结

        本文章记录了LLaMA-Factory在本地的部署以及使用,从最后的测试效果发现训练的效果其实并不理想,不过初有成效,初步判断和数据集规模训练轮数以及参数配置等有关,后期将针对这些方面进行相应的调整,争取达到目标效果。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词