欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 教育 > 锐评 > 数据结构——二叉树——堆(1)

数据结构——二叉树——堆(1)

2025/2/24 13:30:46 来源:https://blog.csdn.net/go_bai/article/details/145329665  浏览:    关键词:数据结构——二叉树——堆(1)

今天,我们来写一篇关于数据结构的二叉树的知识。

在学习真正的二叉树之前,我们必不可少的先了解一下二叉树的相关概念。

一:树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的
 

注意:树形结构中,子树之间不能有交集,否则就不是树形结构

除了根结点外,每个结点有且仅有一个父结点

一颗N节点的树又N-1条边
 

下面我们来具体给出树的相关名词:

节点的度一个节点含有的子树的个数称为该节点的度; 如上图:A的为6

叶节点或终端节点度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

双亲节点或父节点若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点树的度:

一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推

树的高度或深度树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林由m(m>0)棵互不相交的树的集合称为森林

标注:红色的为常用的,橙色为概念

有了上面的铺垫后,我们来认识一下二叉树:

二叉树

图:

二叉树组成: 

由三部分:根,左子树(左孩子),右子树(右孩子)

从上面,我们知道:

1.二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

3. 存在情况:

接下来,我们认识

特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是2^k-1 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树

 证明:满二叉树中高度为h的有多少个结点?

完全二叉树:前h-1都是满的
最后一层要求从左到右是连续的

高度为h的完全二叉数,节点数量的范围是[2^(h-1),2^h-1]

由上面知道满二叉树为2^h-1.

根据完全二叉树的定义

2^(h-1)-1----不算最后一层的。然后再算最后一层:2^(h-1)-1+1==2^(h-1)

所以,它的范围:[2^(h-1),2^h-1]。

此外,对任何一颗二叉树,如果度为0的叶结点个数为n0,度为2的分支节点为2 ,则由n0=n2+1.

结论:度为0的永远比度为2的多1。

二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,

我们知道:顺序表是都一样的,实际上就是数组嘛
而链表不一样,我们通常用箭头那些是想象出来的,实际上并没有箭头的。

同样,二叉树也是:

逻辑结构  想象出来的

物理结构  实实在在内存中是如何存储的

反向过来,你把这棵树的一层一层的值依次往数组里面存储

如下图:

逻辑结构:(想象成这样)

物理结构:(实际就是数组) 

  

另外,我们平时画图的时候,很麻烦画出第一张图那么标准,其实,我们也是可以画出这样子

简便:

 通过观察上面得出的规律:

表示二叉树的值在数组位置中的父子下标关系

parent=(child-1)/2

leftchlid=parent*2+1
rightchlid=parent*2+2

注意,这里必须是从0开始,不然就乱了

有人会问了,能不能在完全二叉树那里使用呢?


这里用数组存储完全二叉数,有局限不适合。

因为浪费很多空间,数组存储表示二叉树只适合完全二叉树。

好了,有了上面的铺垫后,现在让我们来实现一下堆。

概念:

什么是堆呢?

我们将堆分为大堆和小堆

小堆

大堆:

 

在写堆时,底层代码实际就是数组
注意:堆不是排序,堆只规定父亲的大小,并没有规定它的左右孩子的大小

插入时,可能会影响部分祖先。
实际控制的是数组,写的时候把它想象成树

一:定义结构体

typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;

1.需要一个数组

2.要算出数组的大小

3.最大容量

二:初始化部分

void HeapInit(HP* php)
{assert(php);php->a = (HPDataType*)malloc(sizeof(HPDataType)*4);if (php->a == NULL){perror("malloc fail");return;}php->size = 0;php->capacity = 4;
}

这里初始化跟之前的都差不多。

1.创建数组,用malloc

2.初始化size为0;

3.因为上面创建了数组:4个位置,所以初始化时的最大容量为4。

三:销毁部分

void HeapDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->capacity = php->size = 0;
}

1.置空,置零就可以了。

四:Push部分

首先,我们得思考一下,堆咋push的。

由于本质上是数组,所以我们push在数组的最后那里插。

假如在下面数组push一个数字60.

因此我们会写成这样一个代码:

void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * php->capacity*2);if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity *= 2;}php->a[php->size] = x;php->size++;调整部分下面有讲AdjustUp(php->a, php->size - 1);
}

但是呢,如果是像上面一样push了一个数字的话,堆就乱了:

变成了

 面对这种问题,我们又该怎么办呢?

这里我们使用一种叫向上调整法解决这种问题:

我们以大堆来举例子:

我们发现上面是不是将30和60的位置交换了,就可以重新变成大堆了?

那么,我们又是怎么变成这一步的呢?

不能发现,你看

1.将分为左孩子和右孩子和根三部分。

2.比较左孩子和右孩子,拿出大的孩子,再跟根比较。

3.如果大的孩子的数字大于根,就交换。反之不换。

对上述做法叫做向上调整法。

对此我们写一个函数:

向上调整部分

void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;//while (parent >= 0)while(child > 0){if (a[child] > a[parent]){交换Swap(&a[child], &a[parent]);更新child = parent;parent = (child - 1) / 2;}else{break;}}
}

 解读:

除了child这个位置,前面数据构成堆

1.我们是不是得找到父亲结点。上面我们已经给出了父亲与孩子之间的公式变换了

2.由于交换这个代码内容在后面也是常用到的,所以我们单独封装一个函数

交换部分

void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType x = *p1;*p1 = *p2;*p2 = x;
}

3.这样容易忽略的问题是:

while的条件:弄成   while(child > 0)   而不要弄成while (parent >= 0)

这里看似都没有问题运行时,但是会不好。

parent >= 0,意味着parent<0才会中止,但是,parent会小于0吗?不会,因为这里最差的情况就是孩子等于0.

parent = (child - 1) / 2;即就是-1/2,按理是0.5,但是这里是整形,所以还是0,还是会进入循环。

但是呢?这个程序不会死循环,parent=0时,进入循环,但是它不满足if (a[child] > a[parent])条件,所以还是会到达break。

所以能正常跑,但是不好,最好用child>0.

删除部分

void HeapPop(HP* php)
{assert(php);后面讲到assert(!HeapEmpty(php));// 删除数据Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}

堆的删除部分,有人可能会想直接这样删

但是,接下来的堆就会变成这样:

直接挪动删除 :

1.效率低下。

2.父子兄弟关系全乱了。

 那么,我们想到用间接的方法来解决这种问题:

1.我们先把第一个和最后一个交换。

2.删除最后一个。

3.接着向下调整法。

1)什么是向下调整法,即从上面往下调

1.找到孩子中大的数字,与父亲比较,孩子大的就交换。反之不交换

向下调整部分

void AdjustDown(HPDataType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){// 选出左右孩子中大的那一个if (child + 1 < n && a[child+1] > a[child]){++child;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

 1.这里采用的是假设左孩子大,然后再循环里面再弄个if语句,如果右孩子大的话,就交换变成右孩子。(因为左右孩子再邻位,相差1)

2.接着再比较父亲结点,与大的孩子,大就交换,再更新父亲结点和孩子结点。反之就break,跳出循环。

返回顶位置

HPDataType HeapTop(HP* php)
{assert(php);return php->a[0];
}

判断空

bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}

返回大小

int HeapSize(HP* php)
{assert(php);return php->size;
}

好了,最后

附上总代码

Heap.h部分

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>typedef int HPTypeData;
typedef struct Heap
{HPTypeData* a;int size;int capacity;}Heap;void HPInit(Heap* php);
void HPDestory(Heap* php);
void HPPush(Heap* php, HPTypeData x);
void HPPop(Heap* php);
HPTypeData HPtop(Heap* php);
bool HPEmpty(Heap* php);
int HPSize(Heap* php);

Heap.c部分

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"void HPInit(Heap* php)
{assert(php);php->a =(HPTypeData*)malloc(sizeof(HPTypeData)*4);if (php->a == NULL){perror("malloc fail");return;}php->capacity = 4;php->size = 0;
}
void HPDestory(Heap* php)
{assert(php);free(php->a);php->a = NULL;php->size = 0;php->capacity = 0;
}void Swap(HPTypeData* p1,HPTypeData* p2)
{HPTypeData temp = *p1;*p1 = *p2;*p2 = temp;
}
void Adjustup(HPTypeData* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] > a[parent]){Swap(&a[child], &a[parent]);child = parent;parent= (child - 1) / 2;}else{break;}}
}
void HPPush(Heap* php, HPTypeData x)
{assert(php);if (php->a == php->capacity){HPTypeData* temp = (HPTypeData*)realloc(php->a, sizeof(HPTypeData) * php->capacity * 2);if (temp == NULL){perror("realloc fail");return;}php->a = temp;php->capacity *= 2;}php->a[php->size] = x;php->size++;//Adjustup(php->a,php->a[php->size-1]);Adjustup(php->a,php->size-1);}Adjustdown(HPTypeData* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child + 1 < n && a[child + 1] > a[child]){child++;}if (a[child] > a[parent]){Swap(&a[parent],&a[child]);parent = child;child= parent * 2 + 1;}else{break;}}
}
void HPPop(Heap* php)
{assert(php);assert(!HPEmpty(php));Swap(&php->a[0], &php->a[php->size - 1]);php->size--;Adjustdown(php->a, php->size, 0);
}
HPTypeData HPtop(Heap* php)
{assert(php);return php->a[0];
}
bool HPEmpty(Heap* php)
{assert(php);return php->size == 0;
}
int HPSize(Heap* php)
{assert(php);return php->size;
}

test.c部分

#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"//int main()
//{
//	HP hp;
//	HeapInit(&hp);
//	HeapPush(&hp, 4);
//	HeapPush(&hp, 18);
//	HeapPush(&hp, 42);
//	HeapPush(&hp, 12);
//	HeapPush(&hp, 21);
//	HeapPush(&hp, 3);
//	HeapPush(&hp, 5);
//	HeapPush(&hp, 5);
//	HeapPush(&hp, 50);
//	HeapPush(&hp, 5);
//	HeapPush(&hp, 5);
//	HeapPush(&hp, 15);
//	HeapPush(&hp, 5);
//	HeapPush(&hp, 45);
//	HeapPush(&hp, 5);
//
//	int k = 0;
//	scanf("%d", &k);
//	while (!HeapEmpty(&hp) && k--)
//	{
//		printf("%d ", HeapTop(&hp));
//		HeapPop(&hp);
//	}
//	printf("\n");
//
//	return 0;
//}// 排升序 -- 建大堆
void HeapSort(int* a, int n)
{// 建堆 -- 向上调整建堆for (int i = 1; i < n; ++i){AdjustUp(a, i);}// 自己先实现}int main()
{int a[10] = { 2, 1, 5, 7, 6, 8, 0, 9, 4, 3}; // 对数组排序HeapSort(a, 10);return 0;
}

最后,到了本次鸡汤部分:

小小的人,有大大的梦想!干!

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词