欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 教育 > 锐评 > 人工智能-A*算法与卷积神经网络(CNN)结合实现路径规划

人工智能-A*算法与卷积神经网络(CNN)结合实现路径规划

2025/2/25 3:04:14 来源:https://blog.csdn.net/testManger/article/details/145522522  浏览:    关键词:人工智能-A*算法与卷积神经网络(CNN)结合实现路径规划

以下是一个将 A* 算法与卷积神经网络(CNN)结合实现路径规划的代码示例。主要思路是使用 A* 算法生成训练数据,然后用这些数据训练一个 CNN 模型,让 CNN 学习如何预测路径,最后使用训练好的 CNN 模型进行路径规划。

代码实现

import numpy as np
import heapq
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader# A* 算法实现
class Node:def __init__(self, x, y, g=float('inf'), h=float('inf'), parent=None):self.x = xself.y = yself.g = gself.h = hself.f = g + hself.parent = parentdef __lt__(self, other):return self.f < other.fdef heuristic(current, goal):return abs(current[0] - goal[0]) + abs(current[1] - goal[1])def astar(grid, start, goal):rows, cols = grid.shapeopen_list = []closed_set = set()start_node = Node(start[0], start[1], g=0, h=heuristic(start, goal))heapq.heappush(open_list, start_node)while open_list:current_node = heapq.heappop(open_list)if (current_node.x, current_node.y) == goal:path = []while current_node:path.append((current_node.x, current_node.y))current_node = current_node.parentreturn path[::-1]closed_set.add((current_node.x, current_node.y

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词