-
创建虚拟环境用于运行
-
运行 InternLM 的基础环境,命名为 llamaindex conda create -n llamaindex python=3.10
- 查看存在的环境
conda env list
- 激活刚刚创建的环境
conda activate llamaindex
- 安装基本库pytorch,torchvision ,torchaudio,pytorch-cuda 并指定通道(建议写上对应的版本号)
-
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
-
-
-
安装 Llamaindex
- 此操作在对应的虚拟环境中安装 Llamaindex和相关的包
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0
- 此操作在对应的虚拟环境中安装 Llamaindex和相关的包
-
下载 Sentence Transformer 模型
- 为了方面管理建立对应的路径,在根目录下创建2个文件(
mkdir llamaindex_demo mkdir model
) - 然后在llamaindex_demo目录下创建下载脚本(
touch llamaindex_demo/download_hf.py
) - 在download_hf.py文件中写入
-
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型下载源词向量模型Sentence Transformer
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
-
- 执行下载模型脚本
python download_hf.py
- 如果上面的步骤不存在nltk此处需要手动下载nltk模型(cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip)
- 为了方面管理建立对应的路径,在根目录下创建2个文件(
-
LlamaIndex HuggingFaceLLM
- 下载模型internlm2-chat-1_8b (pip install internlm2-chat-1_8b )
- 如果有对应的模型可以软链接出来ln -s 模型路径 要复制到哪里的路径如(
cd ~/model ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
) - 创建运行模型脚本 touch
touch ~/llamaindex_demo/llamaindex_internlm.py
- 编辑llamaindex_internlm.py文件(
from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core.llms import ChatMessage llm = HuggingFaceLLM(model_name="/root/model/internlm2-chat-1_8b",tokenizer_name="/root/model/internlm2-chat-1_8b",model_kwargs={"trust_remote_code":True},tokenizer_kwargs={"trust_remote_code":True} )rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")]) print(rsp)
) - 运行模型
python llamaindex_internlm.py
-
LlamaIndex RAG
-
安装
LlamaIndex
词嵌入向量依赖(pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor
)
-
如果上面步骤报错请根据提示安装对应的插件版本(如 pip install huggingface-hub==0.23.5)
-
获取知识库(创建data 把xtuner包中文件移动到对应的目录cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./) -
创建运行模型代码
llamaindex_RAG.py
-
llamaindex_RAG.py文件内容(from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settingsfrom llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.huggingface import HuggingFaceLLMembed_model = HuggingFaceEmbedding(model_name="/root/model/sentence-transformer" )Settings.embed_model = embed_modelllm = HuggingFaceLLM(model_name="/root/model/internlm2-chat-1_8b",tokenizer_name="/root/model/internlm2-chat-1_8b",model_kwargs={"trust_remote_code":True},tokenizer_kwargs={"trust_remote_code":True} ) Settings.llm = llmdocuments = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("xtuner是什么?")print(response))
- 运行
python llamaindex_RAG.py
-
-
浏览器上运行对话
- 安装服务依赖
pip install streamlit==1.36.0
- 创建运行脚本app.py
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLMst.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")# 初始化模型
@st.cache_resource
def init_models():
embed_model = HuggingFaceEmbedding(
model_name="/root/model/sentence-transformer"
)
Settings.embed_model = embed_modelllm = HuggingFaceLLM(
model_name="/root/model/internlm2-chat-1_8b",
tokenizer_name="/root/model/internlm2-chat-1_8b",
model_kwargs={"trust_remote_code": True},
tokenizer_kwargs={"trust_remote_code": True}
)
Settings.llm = llmdocuments = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()return query_engine
# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
st.session_state['query_engine'] = init_models()def greet2(question):
response = st.session_state['query_engine'].query(question)
return response
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
return greet2(prompt_input)# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llama_index_response(prompt)
placeholder = st.empty()
placeholder.markdown(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message) -
运行
streamlit run app.py
- 默认端口8503( http://localhost:8503)
- 最终效果
- 安装服务依赖
基于 LlamaIndex 构建自己的 RAG 知识库
2025/2/24 19:31:22
来源:https://blog.csdn.net/qq_33382118/article/details/140673803
浏览:
次
关键词:基于 LlamaIndex 构建自己的 RAG 知识库
版权声明:
本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。
我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com
热文排行
最新新闻
- csrf和ssrf的区别
- leetcode3250. 单调数组对的数目 I,仅需1s
- 根据问题现象、用户操作场景及日志打印去排查C++软件问题,必要时尝试去复现问题
- mac-m1安装nvm,docker,miniconda
- react v18——env环境变量配置、打包配置(craco)
- Linux --- 文件系统
- 【深度学习之回归预测篇】 深度极限学习机DELM多特征回归拟合预测(Matlab源代码)
- npm库xss依赖的使用方法和vue3 中Web富文本编辑器 wangeditor 使用xss库解决 XSS 攻击的方法
- Vue 中实现修改数组,并保持页面渲染数据是响应式更改
- 计算机毕业设计 基于Python内蒙古旅游景点数据分析系统 Django+Vue 前后端分离 附源码 讲解 文档
推荐新闻
- csrf和ssrf的区别
- leetcode3250. 单调数组对的数目 I,仅需1s
- 根据问题现象、用户操作场景及日志打印去排查C++软件问题,必要时尝试去复现问题
- mac-m1安装nvm,docker,miniconda
- react v18——env环境变量配置、打包配置(craco)
- Linux --- 文件系统
- 【深度学习之回归预测篇】 深度极限学习机DELM多特征回归拟合预测(Matlab源代码)
- npm库xss依赖的使用方法和vue3 中Web富文本编辑器 wangeditor 使用xss库解决 XSS 攻击的方法
- Vue 中实现修改数组,并保持页面渲染数据是响应式更改
- 计算机毕业设计 基于Python内蒙古旅游景点数据分析系统 Django+Vue 前后端分离 附源码 讲解 文档