欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 教育 > 锐评 > 算法-UKF中Sigma点生成

算法-UKF中Sigma点生成

2024/10/25 12:21:52 来源:https://blog.csdn.net/weixin_40826634/article/details/141352917  浏览:    关键词:算法-UKF中Sigma点生成
void UKF::MakeSigmaPoints() {Eigen::VectorXd x_aug_ = Eigen::VectorXd(n_x_);x_aug_.head(n_x_) = x_;Eigen::MatrixXd P_aug = Eigen::MatrixXd::Zero(n_x_, n_x_);// 转成正定矩阵P_aug = pdefinite_svd(P_);// LLT分解Eigen::MatrixXd L = P_aug.llt().matrixL();sigma_points = Eigen::MatrixXd(n_x_, 2 * n_x_ + 1);sigma_points.col(0) = x_aug_;const double c = std::sqrt(lamda_ + n_x_);for (int i = 0; i < n_x_; ++i) {sigma_points.col(i + 1) = x_aug_ + c * L.col(i);sigma_points.col(i + n_x_ + 1) = x_aug_ - c * L.col(i);}
}

代码中Sigma点生成解释如下:
在UKF(Unscented Kalman Filter,无迹卡尔曼滤波)中,sigma点是一组精心选择的采样点,用于近似非线性函数的传播和观测模型。这些sigma点基于系统的状态向量均值和协方差矩阵生成,旨在捕捉状态向量的分布特性。以下是关于UKF中sigma点的详细解释:
一、sigma点的生成

确定状态向量和协方差矩阵:状态向量通常包含系统的状态变量。协方差矩阵描述了状态变量之间的关系,即各状态变量之间的协方差。
选择sigma点的数量:通常,sigma点的数量是状态向量维度的两倍加一,即如果状态向量的维度为n,则sigma点的数量为2n+1。
生成sigma点:根据状态向量的均值和协方差矩阵,通过特定的算法(如Julier-UT权重或Merwe-UT权重)生成sigma点。这些sigma点围绕状态向量的均值分布,能够较好地反映状态向量的概率分布特性。

二、sigma点的作用

近似非线性函数的传播:在UKF的预测步骤中,将生成的sigma点通过系统的非线性状态方程传播到下一个时刻,得到预测的sigma点。这一步骤用于近似非线性函数在状态空间中的传播。
计算预测状态向量和协方差矩阵:通过对传播后的sigma点进行加权平均,计算预测状态向量和预测协方差矩阵。这些预测值反映了系统状态在下一时刻的估计值及其不确定性。
近似非线性观测模型:在UKF的更新步骤中,将预测的sigma点通过系统的非线性观测方程映射到观测空间,得到预测的观测值sigma点。这一步骤用于近似非线性观测模型在观测空间中的表现。
计算卡尔曼增益和更新状态向量:通过预测的观测值sigma点计算预测的观测向量和协方差矩阵,进而计算卡尔曼增益。最后,利用卡尔曼增益和实际的观测值对预测的状态向量进行修正,得到更新后的状态向量和协方差矩阵。

三、sigma点的优势

处理非线性系统:UKF通过sigma点近似非线性函数的传播和观测模型,能够有效处理非线性系统。
提高估计精度:相比于EKF(Extended Kalman Filter,扩展卡尔曼滤波)通过泰勒展开将非线性系统线性化,UKF不需要忽略高阶项,因此通常能够获得更高的估计精度。
实现简单:UKF在实现上比EKF更为简单,因为它不需要计算复杂的雅可比矩阵。

综上所述,sigma点在UKF中扮演着至关重要的角色,它们通过近似非线性函数的传播和观测模型,实现了对非线性系统的有效滤波和状态估计。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com