欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 建筑 > 人工智能神经网络

人工智能神经网络

2025/2/22 3:50:39 来源:https://blog.csdn.net/weixin_74027669/article/details/145688395  浏览:    关键词:人工智能神经网络

        利用女性糖尿病人的怀孕次数、血糖、血压、皮脂厚度、胰岛素等特征通过BP神经网络来预测一个女性是否患有糖尿病,并且计算出模型预测的准确率。通过女性糖尿病患者的一系列特征构建一个BP神经网络模型,通过该模型预测一名女性患有糖尿病的概率。

        main.py

#导入keras等模块
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
import numpy as np
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
#导入女性糖尿病患者的特征数据
dataset = np.loadtxt('pima-indians-diabetes.csv', delimiter=',')
X = dataset[:, 0 : 8]
Y = dataset[:, 8]
# 将数据按照8:2比例分成训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1)
print(x_train.shape)
print(x_test.shape)
# 创建BP神经网络
model = Sequential()
# 输入层8个变量,与数据维度一致
# 第一个隐藏层有12个神经元,且采用ReLU激活函数,glorot均匀分布初始化器,偏差值初始为0
model.add(Dense(12, input_dim=8, activation='relu', kernel_initializer='glorot_uniform', bias_initializer='zeros'))
# 第二个隐藏层有8个神经元,且采用ReLU激活函数
model.add(Dense(8, activation='relu'))
# 输出层1个神经元,且采用Sigmoid激活函数
model.add(Dense(1, activation='sigmoid'))
#使用adam为优化器
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x=x_train, y=y_train, epochs=150, batch_size=10)
# 打印出模型每层权值
print(model.trainable_weights)
print(model.get_weights())
# 评估模型
scores = model.evaluate(x=x_test, y=y_test)
print('\n%s : %.2f%%' % (model.metrics_names[1], scores[1]*100))

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词