欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 生物信息学和数据库知识发现

生物信息学和数据库知识发现

2025/4/29 0:18:10 来源:https://blog.csdn.net/weixin_43250801/article/details/146963665  浏览:    关键词:生物信息学和数据库知识发现

什么是生物信息学?生物信息学(bioinformatics)利用应用数学信息学统计学计算机科学的方法研究生物学的问题。生物信息学以各种各样的生物学数据为研究材料,通过计算机处理后再进行结果解读,处理方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。当前主要的研究方向有:序列比对、序列组装、基因识别、基因重组、蛋白质结构预测、基因表达、蛋白质反应的预测,以及进化模型创建等。

从以上定义可以看出生物信息学的兴起有赖于测序技术生物样本库以及计算机科学等的高速发展。生物信息学的发展也衍生出了一系列组学研究,包括转录组学、基因组学、蛋白质组学、代谢组学和微生物组学等,所有这些组学都是由一个个小型或大型的数据库构成的,比如我们最熟知的TCGA数据库,存储了33种肿瘤的转录组,基因组,甲基化组等多种类型的数据,而对TCGA等数据库进行研究即我们常说的数据库知识发现(Knowledge-Discovery in Databases, KDD)。KDD是指从存放在数据库、数据仓库或者其他信息库中的大量数据中挖掘出隐藏的有用信息(知识)的技术。他被广泛应用到各个领域,挖掘数据之间的潜在模式,找出有价值的信息。KDD的基本过程包括数据库的清理,集成形成数据仓库,经过选择变化后将“脏”数据变成“清洁”数据,即预处理后的数据,随后通过数据挖掘构建不同的模型和模式,用来评估和表示各种知识(图1)。数据挖掘(Data mining)又译为资料探勘、数据采矿,是KDD的核心部分,是采用机器学习运筹学统计方法等进行知识发现的阶段。数据挖掘一般是指从大量的数据中通过算法“自动”搜索隐藏于其中有着特殊关系信息的过程,但是从广义上讲,数据挖掘的定义就是从海量数据中提取知识的过程,也就是等同于KDD。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词