欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 【数学分析笔记】第4章第4节 复合函数求导法则及其应用(1)

【数学分析笔记】第4章第4节 复合函数求导法则及其应用(1)

2024/10/26 13:19:28 来源:https://blog.csdn.net/qq_30204431/article/details/142699767  浏览:    关键词:【数学分析笔记】第4章第4节 复合函数求导法则及其应用(1)

4. 微分

4.4 复合函数求导法则及其应用

4.4.1 复合函数求导法则

【定理4.4.1】 u = g ( x ) u=g(x) u=g(x) x = x 0 x=x_0 x=x0可导, g ( x 0 ) = u ( 0 ) g(x_0)=u(0) g(x0)=u(0) y = f ( u ) y=f(u) y=f(u) u = u 0 u=u_0 u=u0可导,则 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x)) x = x 0 x=x_0 x=x0可导且 [ f ( g ( x ) ) ] x = x 0 ′ = f ′ ( u 0 ) g ′ ( x 0 ) [f(g(x))]'_{x=x_0}=f'(u_0)g'(x_0) [f(g(x))]x=x0=f(u0)g(x0)
一个有缺陷的证明!!!】 g ( x 0 + Δ x ) − g ( x 0 ) = Δ u g(x_0+\Delta x)-g(x_0)=\Delta u g(x0+Δx)g(x0)=Δu Δ y = f ( u 0 + Δ u ) − f ( u 0 ) \Delta y=f(u_0+\Delta u)-f(u_0) Δy=f(u0+Δu)f(u0) [ f ( g ( x ) ) ] x = x 0 ′ = lim ⁡ Δ x → 0 Δ y Δ x [f(g(x))]'_{x=x_0}=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x} [f(g(x))]x=x0=Δx0limΔxΔy
Δ → 0 , Δ u → 0 \Delta \to 0,\Delta u \to 0 Δ0,Δu0,则:
[ f ( g ( x ) ) ] x = x 0 ′ = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 ( Δ y Δ u ⋅ Δ u Δ x ) = lim ⁡ Δ u → 0 Δ y Δ u ⋅ lim ⁡ Δ x → 0 Δ u Δ x = f ′ ( u 0 ) g ′ ( x 0 ) [f(g(x))]'_{x=x_0}=\lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}(\frac{\Delta y}{\Delta u}\cdot\frac{\Delta u}{\Delta x})=\lim\limits_{\Delta u\to 0}\frac{\Delta y}{\Delta u}\cdot\lim\limits_{\Delta x\to 0}\frac{\Delta u}{\Delta x}=f'(u_0)g'(x_0) [f(g(x))]x=x0=Δx0limΔxΔy=Δx0lim(ΔuΔyΔxΔu)=Δu0limΔuΔyΔx0limΔxΔu=f(u0)g(x0)
【问题所在】 Δ u → 0 , Δ u ≠ 0 \Delta u\to 0,\Delta u\ne 0 Δu0,Δu=0,但是 lim ⁡ Δ u → 0 Δ y Δ u \lim\limits_{\Delta u\to 0}\frac{\Delta y}{\Delta u} Δu0limΔuΔy中, Δ u \Delta u Δu可能为0,比如有下面的反例:

u ( x ) = { x 2 sin ⁡ 1 x 0 u(x)=\left\{\begin{array}{c} x^{2} \sin \frac{1}{x} \\ 0 \end{array}\right. u(x)={x2sinx10,如果求0点的复合函数导数,则
Δ u = u ( 0 + Δ x ) − u ( 0 ) = ( Δ x ) 2 sin ⁡ 1 Δ x \Delta u =u(0+\Delta x)-u(0)=(\Delta x)^2\sin\frac{1}{\Delta x} Δu=u(0+Δx)u(0)=(Δx)2sinΔx1
u ′ ( 0 ) = lim ⁡ Δ x → 0 ( Δ x ) 2 sin ⁡ 1 Δ x Δ x = 0 u'(0)=\lim\limits_{\Delta x\to 0}\frac{(\Delta x)^2\sin\frac{1}{\Delta x}}{\Delta x}=0 u(0)=Δx0limΔx(Δx)2sinΔx1=0,根据海涅定理,取 Δ x n = 1 n π ≠ 0 \Delta x_n=\frac{1}{n\pi}\ne 0 Δxn=1=0,但是此时 Δ u = 1 n 2 π 2 sin ⁡ ( n π ) = 0 \Delta u=\frac{1}{n^2\pi^2}\sin(n\pi)=0 Δu=n2π21sin()=0,这就出现了 Δ u = 0 \Delta u = 0 Δu=0的情况,如果这个函数和别的函数 f ( u ) f(u) f(u)复合,则在计算 lim ⁡ Δ u → 0 Δ y Δ u \lim\limits_{\Delta u\to 0}\frac{\Delta y}{\Delta u} Δu0limΔuΔy时,会出现分母确确实实是真0而不是趋近于0的情况,所以不能这样证明。
【更改】由 f ( u ) f(u) f(u)可导,则 f ( u ) f(u) f(u)可微, Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + o ( Δ u ) \Delta y=f(u_0+\Delta u)-f(u_0)=f'(u_0)\Delta u+o(\Delta u) Δy=f(u0+Δu)f(u0)=f(u0)Δu+o(Δu)
α = o ( Δ u ) Δ u , lim ⁡ Δ u → 0 , Δ u ≠ 0 α = 0 \alpha = \frac{o(\Delta u)}{\Delta u},\lim\limits_{\Delta u\to 0,\Delta u \ne 0}\alpha = 0 α=Δuo(Δu),Δu0,Δu=0limα=0
Δ y = f ( u 0 + Δ u ) − f ( u 0 ) = f ′ ( u 0 ) Δ u + α Δ u ( Δ u → 0 ) \Delta y=f(u_0+\Delta u)-f(u_0)=f'(u_0)\Delta u+\alpha \Delta u(\Delta u \to 0) Δy=f(u0+Δu)f(u0)=f(u0)Δu+αΔu(Δu0)
Δ u = 0 , α = 0 \Delta u = 0,\alpha = 0 Δu=0,α=0,对上式 Δ y = f ′ ( u 0 ) Δ u + α Δ u \Delta y=f'(u_0)\Delta u+\alpha\Delta u Δy=f(u0)Δu+αΔu也成立
Δ y Δ x = f ′ ( u 0 ) Δ u Δ x + α Δ u Δ x \frac{\Delta y}{\Delta x}=f'(u_0)\frac{\Delta u}{\Delta x}+\alpha\frac{\Delta u}{\Delta x} ΔxΔy=f(u0)ΔxΔu+αΔxΔu
Δ x → 0 ⇒ Δ u → 0 ( Δ u = 0 或 Δ u ≠ 0 ) ⇒ lim ⁡ Δ u → 0 α = 0 \Delta x\to 0\Rightarrow\Delta u\to 0(\Delta u = 0或\Delta u \ne 0)\Rightarrow\lim\limits_{\Delta u\to 0}\alpha = 0 Δx0Δu0(Δu=0Δu=0)Δu0limα=0
lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ′ ( u 0 ) Δ u Δ x + lim ⁡ Δ x → 0 α Δ u Δ x = f ′ ( u 0 ) g ′ ( x 0 ) + 0 × g ′ ( x 0 ) = f ′ ( u 0 ) g ′ ( x 0 ) \lim\limits_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\to 0}f'(u_0)\frac{\Delta u}{\Delta x}+\lim\limits_{\Delta x\to 0}\alpha\frac{\Delta u}{\Delta x}=f'(u_0)g'(x_0)+0\times g'(x_0)=f'(u_0)g'(x_0) Δx0limΔxΔy=Δx0limf(u0)ΔxΔu+Δx0limαΔxΔu=f(u0)g(x0)+0×g(x0)=f(u0)g(x0)
【复合函数链式求导法则】
y = f ( u ) , u = g ( x ) , y = f ( g ( x ) ) = f ∘ g ( x ) y=f(u),u=g(x),y=f(g(x))=f\circ g(x) y=f(u),u=g(x),y=f(g(x))=fg(x)
[ f ( g ( x ) ) ] ′ = d y d x = d y d u ⋅ d u d x [f(g(x))]'=\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx} [f(g(x))]=dxdy=dudydxdu
【例】 y = f ( u ) , u = g ( x ) , x = h ( t ) , d y d t = d y d u ⋅ d u d x ⋅ d x d t = f ′ ( u 0 ) g ′ ( x 0 ) h ′ ( t 0 ) y=f(u),u=g(x),x=h(t),\frac{dy}{dt}=\frac{dy}{du}\cdot\frac{du}{dx}\cdot\frac{dx}{dt}=f'(u_0)g'(x_0)h'(t_0) y=f(u),u=g(x),x=h(t),dtdy=dudydxdudtdx=f(u0)g(x0)h(t0)



【例4.4.1】 y = x α = e α ln ⁡ x , y = e u , u = α ln ⁡ x , d y d x = ( e u ) ′ ( α ln ⁡ x ) ′ = e u ⋅ α x = x α ⋅ α x = α x α − 1 y=x^{\alpha}=e^{\alpha \ln x},y=e^u,u=\alpha \ln x,\frac{dy}{dx}=(e^u)'(\alpha \ln x)'=e^u\cdot\frac{\alpha}{x}=x^{\alpha}\cdot\frac{\alpha}{x}=\alpha x^{\alpha - 1} y=xα=eαlnx,y=eu,u=αlnx,dxdy=(eu)(αlnx)=euxα=xαxα=αxα1


【例4.4.2】 y = e cos ⁡ x y=e^{\cos x} y=ecosx,求 y ′ y' y
【解】 d y d x = ( e u ) ′ ( cos ⁡ x ) ′ = − e cos ⁡ x sin ⁡ x \frac{dy}{dx}=(e^u)'(\cos x)'=-e^{\cos x}\sin x dxdy=(eu)(cosx)=ecosxsinx



【例】求 ( 1 + x 2 ) ′ (\sqrt{1+x^2})' (1+x2 )
【解】 ( 1 + x 2 ) ′ = 1 2 1 + x 2 ⋅ 2 x = x 1 + x 2 (\sqrt{1+x^2})'=\frac{1}{2\sqrt{1+x^2}}\cdot2x=\frac{x}{\sqrt{1+x^2}} (1+x2 )=21+x2 12x=1+x2 x

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com