欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 资讯 > 嵌入式硬件实战基础篇(一)-STM32+DAC0832 可调信号发生器-产生方波-三角波-正弦波

嵌入式硬件实战基础篇(一)-STM32+DAC0832 可调信号发生器-产生方波-三角波-正弦波

2024/11/15 7:59:19 来源:https://blog.csdn.net/weixin_64593595/article/details/143666664  浏览:    关键词:嵌入式硬件实战基础篇(一)-STM32+DAC0832 可调信号发生器-产生方波-三角波-正弦波

引言:本内容主要用作于学习巩固嵌入式硬件内容知识,用于想提升下述能力,针对学习STM32与DAC0832产生波形以及波形转换,对于硬件的降压和对于前面硬件篇的实际运用,针对仿真的使用,具体如下:

设计目标要求:结合MCU设计制作一个可以产生方波-三角波-正弦波的信号发生器。
具体要求:输出波形频率 范围为20Hz-20kHz 且连续可调;输出波形幅值连续可调;

整体工程已提供在文章末尾。

目录

一、硬件设计

1.电路原理分析

1.1.DAC0832 电路原理分析

1.2.DCDC 电路原理分析

2.原理图与PCB设计

2.1.原理图分析

2.2.PCB分析

二、软件设计

1. sine_wave 函数(输出正弦波)

2. tri_wave 函数(输出三角波)

3. squ_wave 函数(输出方波)

4. set_time 函数(设置定时器周期)

5. HAL_GPIO_EXTI_Callback 函数(外部中断回调)

6. HAL_TIM_PeriodElapsedCallback 函数(定时器溢出回调)

三、仿真验证


一、硬件设计

1.电路原理分析

硬件整体由:主控(STM32F103C6T6)、显示单元(LCD1602)、输入单元(按键)、DCDC模块单元、波形发生单元(DAC0832)由上述组成整个硬件系统。

主要说一下 DAC0832 以及 DCDC 模块单元,其余就不再叙述了,老生常谈的东西了,如果有不会的知识点可以回顾一下我前面的文章。

1.1.DAC0832 电路原理分析

DAC0832 是一种 8 位数字到模拟转换器(DAC),用于将数字信号转换为相应的模拟电压输出。它是由 Analog Devices 公司生产的一款DAC芯片,广泛应用于需要精确模拟信号生成的场合,如音频处理、信号发生器、测试设备以及嵌入式系统中。

如下为数据手册:

上述就是具体引脚的功能了。

DAC0832的主要特点:

  1. 8位分辨率:DAC0832能够将8位数字输入(从0到255)转换成相应的模拟电压输出。分辨率为8位,意味着它有256个不同的输出级别。

  2. 输入接口

    • 并行输入:DAC0832的输入接口是并行型的,它通过8个数据输入引脚(D0-D7)接收8位数字信号。
    • 输入信号是由外部系统提供的数字信号,DAC0832将这些信号转换成相应的模拟电压。
  3. 模拟输出

    • 输出端为模拟电压,电压范围通常取决于芯片的电源电压。假设工作电压为5V,则输出电压范围通常是0V到5V,具体取决于输入数字的值。
  4. 输出类型:DAC0832提供一个双极性输出,允许其在输出端产生正负电压。默认情况下,它使用外部的运算放大器来对输出进行增益调整,以适应不同的应用需求。

  5. 工作电压

    • Vcc:通常为5V,但也有部分版本支持3V电源。
    • Vref:参考电压,通常与Vcc相同。它决定了转换输出的最大电压值。
  6. 转换速率

    • DAC0832具有较高的转换速率,通常为1MSPS(每秒百万次采样),适用于大多数需要快速模拟信号转换的应用。
  7. 控制引脚

    • LDAC:加载数据的控制引脚。当LDAC为低时,DAC将输入数据加载到其内部寄存器中并进行转换。
    • CS (Chip Select):芯片选择引脚,低电平有效,用来选择DAC进行操作。
    • WR (Write):写控制信号,用来触发数据输入到DAC内部。
    • SYNC:同步信号,用于将多个DAC设备同步工作。
  8. 内置运算放大器:DAC0832内部具有一个高输入阻抗的运算放大器,用于对输出电压进行缓冲和驱动,输出信号能够驱动外部负载。

  9. 低功耗:DAC0832采用CMOS技术,具备低功耗特点,适用于需要低功耗的便携式设备。

更多内容还是需要在数据手册搜寻自己所需的信息内容才行。

1.2.DCDC 电路原理分析

由于波形发生器利用了 LM324 正负电源有包含 +10V -10V的正负电压,并且MCU等相关模块都是3.3V电压,且输入电压为12V,因此我们需要多方面的DCDC转换,具体如下:

在Power_VIN中为12V,因此我们要 DCDC 12V-24V to 10.00V 我们利用 TPS62933 来完成此需求,具体内容如下图所示:

下图为案例电路图参考:

由于我们得到+10V之后 LM324 还需要 -10V 才可行,因此需要 DCDC 10V-12V to -10.00V,我们利用 LMZM33606 来实现需求,具体手册参考图如下所示:

更多的详情内容还需要看手册来设计,由于篇幅有限,就只展示部分内容。

最后,我们需要 DCDC 10V-12V to 3.30V 供给 MCU 电压,我们选用 TPS82140 ,相关手册如下所示:

案例如下所示:

综上我们对于原理进行了需求分析,现在可以开始进行原理图设计了。

2.原理图与PCB设计

2.1.原理图分析

总图总览如下所示:

有了前面的相关分析,上述原理图也非常的容易理解了。

2.2.PCB分析

2D图如下所示:

3D预览图如下所示:

二、软件设计

重点讲一下下述的功能点,频率可调、波形可选的信号发生器,使用 STM32 的定时器、GPIO 和中断机制来输出正弦波、三角波和方波信号。下面我们逐步分析代码。

1. sine_wave 函数(输出正弦波)

static void sine_wave(uint8_t location) // 输出正弦波
{static uint8_t i = 0;location = location * 256 / 100;  // 将 location 转换为 0 到 255 的范围GPIOA->ODR = tab[location];  // 从预定义的正弦波查找表 tab 中读取对应的波形数据并输出到 GPIOA++i;  // 每次调用增加计数器if(i >= 64)  // 如果 i 达到 64,则重置 i{i = 0;}
}
  • sine_wave 函数根据 location 值来输出正弦波信号。location 是波形的当前位置。
  • location 会乘以 256 / 100 来转换为适合查找表 tab[] 的索引。tab[] 存储了正弦波的采样值。
  • 每次 sine_wave 被调用时,i 增加,i 用于周期性地从 tab[] 查找表中获取波形数据并通过 GPIOA->ODR 输出。
  • i 被限制为小于 64,这意味着正弦波的查找表周期为 64 次,当 i 达到 64 时,i 会被重置为 0。

2. tri_wave 函数(输出三角波)

static void tri_wave(uint8_t location) // 输出三角波
{uint8_t y;if(location < 50)y = (50 - location) * 255 / 50;  // 前半部分,下降的三角波elsey = (location - 50) * 255 / 50;  // 后半部分,上升的三角波GPIOA->ODR = y;  // 输出计算结果到 GPIOA
}
  • tri_wave 函数生成一个三角波形。location 控制波形的当前位置。
  • 如果 location 小于 50,波形从最大值下降;如果 location 大于 50,波形从最小值上升。
  • y 的值会在 0 到 255 之间变化,表示三角波的振幅。
  • 通过 GPIOA->ODR 输出计算得到的三角波信号。

3. squ_wave 函数(输出方波)

void squ_wave(uint8_t location) // 输出方波
{if(location < 50)GPIOA->ODR = 255;  // 输出高电平(方波的上升沿)elseGPIOA->ODR = 0x0;  // 输出低电平(方波的下降沿)
}
  • squ_wave 函数生成一个方波。location 控制波形的当前位置。
  • 如果 location 小于 50,输出高电平(255);如果 location 大于等于 50,输出低电平(0)。
  • 方波的周期是 100 个时钟周期,GPIOA->ODR 控制方波的输出。

4. set_time 函数(设置定时器周期)

static void set_time(void) // 设置定时器时间
{uint32_t Period;Period = 10000 / freq - 1;  // 根据频率计算定时器的周期htim1.Init.Period = Period;  // 设置定时器周期if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();  // 如果定时器初始化失败,调用错误处理函数}// 启动定时器HAL_TIM_Base_Start_IT(&htim1);
}
  • set_time 根据全局变量 freq 计算定时器周期。freq 是输出波形的频率,Period 是定时器的周期值。
  • htim1.Init.Period 设置定时器的周期,10000 / freq - 1 表示定时器的溢出时间。
  • 定时器初始化成功后,通过 HAL_TIM_Base_Start_IT 启动定时器。

5. HAL_GPIO_EXTI_Callback 函数(外部中断回调)

void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{if(GPIO_PIN_10 == GPIO_Pin) // 频率加{HAL_TIM_Base_Stop(&htim1);if(freq < 20000)freq += 10;set_time();  // 重新设置定时器sprintf((char *)display_buf, "Freq:%dHz     ", freq);  // 显示频率lcd1602_display_string(0, 0, display_buf);  // LCD 显示频率HAL_TIM_Base_Start_IT(&htim1);  // 启动定时器}if(GPIO_PIN_11 == GPIO_Pin) // 频率减{HAL_TIM_Base_Stop(&htim1);if(freq > 20)freq -= 10;set_time();  // 重新设置定时器sprintf((char *)display_buf, "Freq:%dHz     ", freq);  // 显示频率lcd1602_display_string(0, 0, display_buf);  // LCD 显示频率HAL_TIM_Base_Start_IT(&htim1);  // 启动定时器}if(GPIO_PIN_12 == GPIO_Pin) // 切换波形{HAL_TIM_Base_Stop(&htim1);if(mode == 1){mode = 2;lcd1602_display_string(0, 1, (uint8_t *)"Triangle wave");}else if(mode == 2){mode = 3;lcd1602_display_string(0, 1, (uint8_t *)"Square wave  ");}else if(mode == 3){mode = 1;lcd1602_display_string(0, 1, (uint8_t *)"Sine wave  ");}HAL_TIM_Base_Start_IT(&htim1);  // 启动定时器}
}
  • 该回调函数处理外部中断,响应不同的按键或开关操作。
  • GPIO_PIN_10GPIO_PIN_11 用于增加或减少频率,每次按下时,freq 变量会增减 10,并重新设置定时器。
  • GPIO_PIN_12 用于切换波形模式。按下时,波形从正弦波(W_SINE)切换到三角波(W_TRI)再到方波(W_SQU),并在 LCD 屏上显示当前波形。

6. HAL_TIM_PeriodElapsedCallback 函数(定时器溢出回调)

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{static uint8_t times;if(htim == &htim1){switch(mode){case W_SINE: sine_wave(times); break;  // 正弦波case W_TRI:  tri_wave(times); break;   // 三角波case W_SQU:  squ_wave(times); break;   // 方波}times++;if(times >= 100) // 计数到 100 后重置times = 0;}
}
  • 当定时器溢出时,HAL_TIM_PeriodElapsedCallback 被调用。
  • 根据当前的波形模式(mode),调用相应的波形生成函数(sine_wavetri_wavesqu_wave)。
  • times 用于控制波形的位置,每次计数达到 100 时,重置为 0。

如下直接贴出main.c代码,代码非常的简单。

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:*                        opensource.org/licenses/BSD-3-Clause********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdarg.h"
#include "stdio.h"
#include "string.h"/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
///LCD1602使能端口控制
#define BSP_LCD1602_EN_H		HAL_GPIO_WritePin(LCD1602_EN_GPIO_Port, LCD1602_EN_Pin, GPIO_PIN_SET)
#define BSP_LCD1602_EN_L		HAL_GPIO_WritePin(LCD1602_EN_GPIO_Port, LCD1602_EN_Pin, GPIO_PIN_RESET)///LCD1602读/写端口控制
#define BSP_LCD1602_RW_H		HAL_GPIO_WritePin(LCD1602_RW_GPIO_Port, LCD1602_RW_Pin, GPIO_PIN_SET)
#define BSP_LCD1602_RW_L		HAL_GPIO_WritePin(LCD1602_RW_GPIO_Port, LCD1602_RW_Pin, GPIO_PIN_RESET)///LCD1602指令/数据端口控制
#define BSP_LCD1602_RS_H		HAL_GPIO_WritePin(LCD1602_RS_GPIO_Port, LCD1602_RS_Pin, GPIO_PIN_SET)
#define BSP_LCD1602_RS_L		HAL_GPIO_WritePin(LCD1602_RS_GPIO_Port, LCD1602_RS_Pin, GPIO_PIN_RESET)#define W_SINE 1
#define W_TRI 2
#define W_SQU 3/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*/
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;/* USER CODE BEGIN PV */
static uint8_t display_buf[16];static unsigned char tab[256]=     //正弦表
{0x80,0x83,0x86,0x89,0x8d,0x90,0x93,0x96,0x99,0x9c,0x9f,0xa2,0xa5,0xa8,0xab,0xae,0xb1,0xb4,0xb7,0xba,0xbc,0xbf,0xc2,0xc5,0xc7,0xca,0xcc,0xcf,0xd1,0xd4,0xd6,0xd8,0xda,0xdd,0xdf,0xe1,0xe3,0xe5,0xe7,0xe9,0xea,0xec,0xee,0xef,0xf1,0xf2,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfd,0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xfe,0xfd,0xfd,0xfc,0xfb,0xfa,0xf9,0xf8,0xf7,0xf6,0xf5,0xf4,0xf2,0xf1,0xef,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe3,0xe1,0xde,0xdd,0xda,0xd8,0xd6,0xd4,0xd1,0xcf,0xcc,0xca,0xc7,0xc5,0xc2,0xbf,0xbc,0xba,0xb7,0xb4,0xb1,0xae,0xab,0xa8,0xa5,0xa2,0x9f,0x9c,0x99,0x96,0x93,0x90,0x8d,0x89,0x86,0x83,0x80,0x80,0x7c,0x79,0x76,0x72,0x6f,0x6c,0x69,0x66,0x63,0x60,0x5d,0x5a,0x57,0x55,0x51,0x4e,0x4c,0x48,0x45,0x43,0x40,0x3d,0x3a,0x38,0x35,0x33,0x30,0x2e,0x2b,0x29,0x27,0x25,0x22,0x20,0x1e,0x1c,0x1a,0x18,0x16,0x15,0x13,0x11,0x10,0x0e,0x0d,0x0b,0x0a,0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0d,0x0e,0x10,0x11,0x13,0x15,0x16,0x18,0x1a,0x1c,0x1e,0x20,0x22,0x25,0x27,0x29,0x2b,0x2e,0x30,0x33,0x35,0x38,0x3a,0x3d,0x40,0x43,0x45,0x48,0x4c,0x4e,0x51,0x55,0x57,0x5a,0x5d,0x60,0x63,0x66,0x69,0x6c,0x6f,0x72,0x76,0x79,0x7c,0x80
};static uint8_t mode = 1;
static uint16_t freq = 20;/* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM1_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void  delay_us(uint16_t nus)//us延时
{__HAL_TIM_SetCounter(&htim2,0);__HAL_TIM_ENABLE(&htim2);while(__HAL_TIM_GetCounter(&htim2)<nus);__HAL_TIM_DISABLE(&htim2);
}
/*---------------------------------------------------------------------------*/
static void lcd1602_delay_1us(void)
{delay_us(1);
}
/*---------------------------------------------------------------------------*/
void lcd1602_delay_1ms(void)
{HAL_Delay(1);
}
/*---------------------------------------------------------------------------*/
static void lcd1602_port_write(uint8_t val)//1602写入数据
{if(val & 0x80){HAL_GPIO_WritePin(LCD1602_D7_GPIO_Port, LCD1602_D7_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D7_GPIO_Port, LCD1602_D7_Pin, GPIO_PIN_RESET);}if(val & 0x40){HAL_GPIO_WritePin(LCD1602_D6_GPIO_Port, LCD1602_D6_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D6_GPIO_Port, LCD1602_D6_Pin, GPIO_PIN_RESET);}if(val & 0x20){HAL_GPIO_WritePin(LCD1602_D5_GPIO_Port, LCD1602_D5_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D5_GPIO_Port, LCD1602_D5_Pin, GPIO_PIN_RESET);}if(val & 0x10){HAL_GPIO_WritePin(LCD1602_D4_GPIO_Port, LCD1602_D4_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D4_GPIO_Port, LCD1602_D4_Pin, GPIO_PIN_RESET);}if(val & 0x08){HAL_GPIO_WritePin(LCD1602_D3_GPIO_Port, LCD1602_D3_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D3_GPIO_Port, LCD1602_D3_Pin, GPIO_PIN_RESET);}if(val & 0x04){HAL_GPIO_WritePin(LCD1602_D2_GPIO_Port, LCD1602_D2_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D2_GPIO_Port, LCD1602_D2_Pin, GPIO_PIN_RESET);}if(val & 0x02){HAL_GPIO_WritePin(LCD1602_D1_GPIO_Port, LCD1602_D1_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D1_GPIO_Port, LCD1602_D1_Pin, GPIO_PIN_RESET);}if(val & 0x01){HAL_GPIO_WritePin(LCD1602_D0_GPIO_Port, LCD1602_D0_Pin, GPIO_PIN_SET);}else{HAL_GPIO_WritePin(LCD1602_D0_GPIO_Port, LCD1602_D0_Pin, GPIO_PIN_RESET);}
}
/*---------------------------------------------------------------------------*/
static uint8_t lcd1602_read_state(void)//1602读取状态
{uint8_t state;///下面为lcd操作时序BSP_LCD1602_RS_L;BSP_LCD1602_RW_H;BSP_LCD1602_EN_H;lcd1602_delay_1us();state = HAL_GPIO_ReadPin(LCD1602_D7_GPIO_Port, LCD1602_D7_Pin);BSP_LCD1602_EN_L;lcd1602_delay_1us();return state;
}
/*---------------------------------------------------------------------------*/
static void lcd1602_busy_wait(void)//1602空闲判断
{GPIO_InitTypeDef GPIO_InitStruct = {0};uint16_t timeout;GPIO_InitStruct.Pin = LCD1602_D7_Pin;GPIO_InitStruct.Mode = GPIO_MODE_INPUT;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(LCD1602_D7_GPIO_Port, &GPIO_InitStruct);timeout  = 0xffff;while((lcd1602_read_state() & 0x80) == 0x80){timeout--;if(timeout == 0){break;}}lcd1602_delay_1us();GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;HAL_GPIO_Init(LCD1602_D7_GPIO_Port, &GPIO_InitStruct);
}/*---------------------------------------------------------------------------*/
static void lcd1602_write_data(uint8_t dat)//1602写数据
{///下面为lcd1602操作时序lcd1602_busy_wait();BSP_LCD1602_RS_H;BSP_LCD1602_RW_L;BSP_LCD1602_EN_L;lcd1602_port_write(dat);BSP_LCD1602_EN_H;lcd1602_delay_1us();BSP_LCD1602_EN_L;
}
/*---------------------------------------------------------------------------*/
static void lcd1602_write_command(uint8_t cmd)//1602写命令
{///下面为lcd1602操作时序lcd1602_busy_wait();BSP_LCD1602_RS_L;BSP_LCD1602_RW_L;BSP_LCD1602_EN_L;lcd1602_port_write(cmd);BSP_LCD1602_EN_H;lcd1602_delay_1us();BSP_LCD1602_EN_L;
}
/*---------------------------------------------------------------------------*/
void lcd1602_init(void)//1602初始化
{lcd1602_write_command(0x38); ///<设置16 X 2显示, 5 X 7点阵, 8位数据接口lcd1602_delay_1ms();	lcd1602_write_command(0x01); ///<显示清0,数据指针清0lcd1602_delay_1ms();	lcd1602_write_command(0x06); ///<设置写一个字符后地址加1lcd1602_delay_1ms();	lcd1602_write_command(0x0c); ///<设置开显示,不显示光标lcd1602_delay_1ms();
}
/*---------------------------------------------------------------------------*/
void lcd1602_display_char(    uint8_t      x, uint8_t y, uint8_t ch )//1602输入字符
{if(x > 15 || y > 1){return;}if(y == 0){lcd1602_write_command(x | 0x80);///<设置LCD1602第一行要显示的光标位置}else if(y == 1){lcd1602_write_command(x | 0x80 | 0x40);///<设置LCD1602第二行要显示的光标位置}lcd1602_write_data( ch );
}
/*---------------------------------------------------------------------------*/
void lcd1602_display_string( uint8_t x, uint8_t y, const uint8_t * str )//1602输入字符串
{while(*str != '\0'){lcd1602_display_char(x, y, *str); ///<显示一个字符str++;  ///<显示下一个字符x++;    ///<显示下一个位置if(x > 15){break;}}
}
/*---------------------------------------------------------------------------*/
void lcd1602_clear_display(void)//1602清屏
{lcd1602_write_command(0x01);HAL_Delay(5);
}
/*---------------------------------------------------------------------------*/
static void sine_wave(uint8_t location)//输出正弦波
{static uint8_t i = 0;location = location * 256 / 100;GPIOA->ODR = tab[location];++i;if(i>=64){i = 0;}
}
static void tri_wave(uint8_t location)//三角波
{uint8_t y;if(location<50)y=(50-location)*255/50;elsey=(location-50)*255/50;GPIOA->ODR = y;
}void squ_wave(uint8_t location)//方波
{if(location<50)GPIOA->ODR=255;elseGPIOA->ODR=0x0;
}static void set_time(void)//
{uint32_t Period;Period = 10000 / freq - 1;htim1.Init.Period = Period;if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();}}void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
{if(GPIO_PIN_10 == GPIO_Pin)//频率加{HAL_TIM_Base_Stop(&htim1);if(freq < 20000)freq += 10;set_time();sprintf((char *)display_buf, "Freq:%dHz     ", freq);lcd1602_display_string(0, 0, display_buf);HAL_TIM_Base_Start_IT(&htim1);}if(GPIO_PIN_11 == GPIO_Pin)//频率减{HAL_TIM_Base_Stop(&htim1);if(freq > 20)freq -= 10;set_time();sprintf((char *)display_buf, "Freq:%dHz     ", freq);lcd1602_display_string(0, 0, display_buf);HAL_TIM_Base_Start_IT(&htim1);}if(GPIO_PIN_12 == GPIO_Pin)//锯齿波{HAL_TIM_Base_Stop(&htim1);if(mode == 1){mode = 2;lcd1602_display_string(0, 1, (uint8_t *)"Triangle wave");}else if(mode == 2){mode = 3;lcd1602_display_string(0, 1, (uint8_t *)"Square wave  ");}else if(mode == 3){mode = 1;lcd1602_display_string(0, 1, (uint8_t *)"Sine wave  ");}HAL_TIM_Base_Start_IT(&htim1);}
}void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{static uint8_t times;if(htim == &htim1){switch(mode){case W_SINE: sine_wave(times);break;//计算出波的位置case W_TRI:  tri_wave(times);break;case W_SQU:  squ_wave(times);break;}times++;if(times>=100)//计数100次times=0;}
}
/*---------------------------------------------------------------------------*/
/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM2_Init();MX_TIM1_Init();/* USER CODE BEGIN 2 */lcd1602_init();//1602初始化sprintf((char *)display_buf, "Freq:%dHz     ", freq);lcd1602_display_string(0, 0, display_buf);lcd1602_display_string(0, 1, (uint8_t *)"Sine wave");HAL_TIM_Base_Start_IT(&htim1);set_time();/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK){Error_Handler();}
}/*** @brief TIM1 Initialization Function* @param None* @retval None*/
static void MX_TIM1_Init(void)
{/* USER CODE BEGIN TIM1_Init 0 *//* USER CODE END TIM1_Init 0 */TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};/* USER CODE BEGIN TIM1_Init 1 *//* USER CODE END TIM1_Init 1 */htim1.Instance = TIM1;htim1.Init.Prescaler = 7;htim1.Init.CounterMode = TIM_COUNTERMODE_UP;htim1.Init.Period = 1000-1;htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim1.Init.RepetitionCounter = 0;htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;if (HAL_TIM_Base_Init(&htim1) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK){Error_Handler();}/* USER CODE BEGIN TIM1_Init 2 *//* USER CODE END TIM1_Init 2 */}/*** @brief TIM2 Initialization Function* @param None* @retval None*/
static void MX_TIM2_Init(void)
{/* USER CODE BEGIN TIM2_Init 0 *//* USER CODE END TIM2_Init 0 */TIM_ClockConfigTypeDef sClockSourceConfig = {0};TIM_MasterConfigTypeDef sMasterConfig = {0};/* USER CODE BEGIN TIM2_Init 1 *//* USER CODE END TIM2_Init 1 */htim2.Instance = TIM2;htim2.Init.Prescaler = 7;htim2.Init.CounterMode = TIM_COUNTERMODE_UP;htim2.Init.Period = 65535;htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;if (HAL_TIM_Base_Init(&htim2) != HAL_OK){Error_Handler();}sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK){Error_Handler();}sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK){Error_Handler();}/* USER CODE BEGIN TIM2_Init 2 *//* USER CODE END TIM2_Init 2 */}/*** @brief GPIO Initialization Function* @param None* @retval None*/
static void MX_GPIO_Init(void)
{GPIO_InitTypeDef GPIO_InitStruct = {0};/* GPIO Ports Clock Enable */__HAL_RCC_GPIOA_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOA, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|LCD1602_EN_Pin|LCD1602_RW_Pin|LCD1602_RS_Pin, GPIO_PIN_RESET);/*Configure GPIO pin Output Level */HAL_GPIO_WritePin(GPIOB, LCD1602_D0_Pin|LCD1602_D1_Pin|LCD1602_D2_Pin|LCD1602_D3_Pin|LCD1602_D4_Pin|LCD1602_D5_Pin|LCD1602_D6_Pin|LCD1602_D7_Pin, GPIO_PIN_RESET);/*Configure GPIO pins : PA0 PA1 PA2 PA3PA4 PA5 PA6 PA7LCD1602_EN_Pin LCD1602_RW_Pin LCD1602_RS_Pin */GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|LCD1602_EN_Pin|LCD1602_RW_Pin|LCD1602_RS_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/*Configure GPIO pins : LCD1602_D0_Pin LCD1602_D1_Pin LCD1602_D2_Pin LCD1602_D3_PinLCD1602_D4_Pin LCD1602_D5_Pin LCD1602_D6_Pin LCD1602_D7_Pin */GPIO_InitStruct.Pin = LCD1602_D0_Pin|LCD1602_D1_Pin|LCD1602_D2_Pin|LCD1602_D3_Pin|LCD1602_D4_Pin|LCD1602_D5_Pin|LCD1602_D6_Pin|LCD1602_D7_Pin;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/*Configure GPIO pins : PB10 PB11 PB12 */GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;GPIO_InitStruct.Pull = GPIO_PULLUP;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/* EXTI interrupt init*/HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

三、仿真验证

下图为仿真图:

如下为正弦波:

如下为三角波:

如下为方波:

频率也是可以增加减少的(20HZ-20KHZ)

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com