目录
一、功能介绍
二、关键技术
1、安装WordCloud
2、利用WordCloud
1、WordCloud的基础用法
**相关参数介绍**
**WordCloud 提供的方法如下**
2、WordCloud的应用举例
3、设置停用词
4、WordCloud使用词频
三、程序设计的步骤
1、抓取网页数据
2、数据清洗
3、用词云进行展示
四、实现代码
五、最终效果展示
一、功能介绍
词云,即:对网络文本中出现频率较高的“关键词”予以视觉上的突出,形成“关键词云层”或“关键词渲染”,从而过滤掉大量的文本信息,使浏览网页者只要扫过一眼文本就可以领略文本的主旨。
本项目用来爬取豆瓣网上最新的电影评论(以最新上映的:异形:夺命舰 Alien: Romulus为例),经过数据清理和词频统计后进行词云展示。
二、关键技术
1、安装WordCloud
pip install wordcloud
2、利用WordCloud
1、WordCloud的基础用法
class wordcloud.WordCloud(font path=None, width=400, height=200, margin=2, ranks only=None, prefer horizontal=0.9, mask=None, scale=1, color func=None, max words=200, min font size=4, stopwords=None, random state=None, background color='black', max font size=None, font step=1, mode='RGB', relative scaling=0.5, regexp=None, collocations=True, colormap=None, normalize_plurals=True)
**相关参数介绍**
- font_path:需要展现什么字体就把该字体路径+扩展名写上,例如:font_path = ‘黑体.ttf’。
- width:输出的画布宽度,默认为400像素
- height:输出的画布高度,默认为200像素
- prefer_horizontal:词语水平方向排版出现的频率,默认为 0.9(所以词语垂直方向排版出现的频率为 0.1)。
- mask:如果该参数为空,则使用二维遮罩绘制词云;如果该参数非空,设置的宽高值将被忽略,遮罩形状将被 mask 取代。除了全白(#FFFFFF)部分不会绘制以外,其余部分会用于绘制词云。例如bg_pic= imread(‘读取一张图片.png’),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。用户可以用 PS 工具将自己要显示的形状复制到一个纯白色的画布上,然后保存。
- Scale:按照比例放大画布,例如设置为1.5,则长和宽都是原来画布的 1.5 倍。
- min_font_size:显示的最小的字体大小。
- font_step:字体步长,如果步长大于1,会加快运算,但是可能导致结果出现较大的误差。
- max_words:要显示的词的最大个数。
- stopwords:设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS。
- background_color:背景颜色,例如 background color=‘white’,背景颜色为白色,默认颜色为黑色。
- max_font_size:显示的最大的字体大小。
- mode:当该参数为 “RGBA” 并且 background_color 不为空时背景透明。
- relative_scaling:词频和字体大小的关联性。
- color_func:生成新颜色的函数,如果为空,则使用selfcolor_func。
- regexp:使用正则表达式分隔输入的文本。
- collocations:是否包括两个词的搭配。
- colormap:给每个单词随机分配颜色,若指定color func,则忽略该方法。
**WordCloud 提供的方法如下**
- fit_words(frequencies):根据词频生成词云。
- generate(text):根据文本生成词云。
- generate_from_frequencies(frequencies[…]):根据词频生成词云。
- generate_from_text(text):根据文本生成词云。
- process_text(text):将长文本分词并去除屏蔽词(此处指英语,中文分词还需要自己用其他库先行实现,使用上面的fit_words(fequencies))。
- recolor([random_state,color_func,colormap]):对现有输出重新着色,重新着色会比重新生成整个词云快很多。
- to_array():转化为 numpy array。
- to_file(filename):输出到文件。
2、WordCloud的应用举例
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
import matplotlib.pyplot as plt
from PIL import Image # 使用Pillow库代替scipy.misc.imread
import numpy as nptext = open('test.txt', 'r',encoding='utf-8').read() # 读取一个txt文件
bg_pic = Image.open('alice.png') # 读取背景图片
'''设置词云样式'''
wc = WordCloud(background_color='White', mask=np.array(bg_pic), font_path="simhei.ttf", max_words=2000, max_font_size=150,random_state=30, scale=1.5)
wc.generate_from_text(text) # 根据文本生成词云image_colors = ImageColorGenerator(np.array(bg_pic)) # 确保bg_pic是数组格式
plt.imshow(wc) # 展示词云图
plt.axis('off')
plt.show()
print('display success!')# 保存词云图片
wc.to_file('test2.jpg')
运行结果:
3、设置停用词
用户可以手动设置停用词,使得词云中不显示该词。
from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS # 词云包# 读取整个文章
text = open('test.txt', 'r', encoding='utf-8').read() # 读取一个txt文件
# 读取遮罩/彩色图像
alice_coloring = np.array(Image.open('alice.png')) # 读取背景图片
# 设置停用词
stopwords = set(STOPWORDS)
stopwords.add("的") # 人工添加停用词
stopwords.add("了") # 人工添加停用词# 可以通过mask参数来设置词云形状
wc = WordCloud(background_color='White', mask=np.array(alice_coloring), font_path="simhei.ttf", max_words=2000,stopwords=stopwords, max_font_size=40,random_state=42)
# 生成词云
wc.generate(text)
# 根据图片生成颜色
image_colors = ImageColorGenerator(np.array(alice_coloring)) # 确保bg_pic是数组格式
plt.imshow(wc, interpolation="bilinear") # 展示词云图
plt.axis('off')
plt.show()# 保存词云图片
wc.to_file('test2.jpg')
运行结果:
4、WordCloud使用词频
import jieba.analyse
from PIL import Image, ImageSequence
import numpy as np
import matplotlib.pyplot as pltfrom wordcloud import WordCloud, ImageColorGenerator, STOPWORDS # 词云包lyric = ''
f = open('./test.txt', 'r', encoding='utf-8')
for i in f:lyric += f.read()
# 用jieba对文章做分词,提取出词频高的前50个词
result = jieba.analyse.textrank(lyric, topK=50, withWeight=True)
keywords = dict()
for i in result:keywords[i[0]] = i[1]
print(keywords)
运行结果:
三、程序设计的步骤
1、抓取网页数据
查找页面中id为’nowplaying’的div标签:
在找到的div标签内,查找所有class为’list-item’的li标签:
2、数据清洗
** 消除与数据分析无关的数据 **
1、正则表达式去除非中文字符:
pattern = re.compile(r'[^ws]')
cleaned_comments = pattern.sub('', comments)
2、停用词过滤:
stopwords = set(STOPWORDS)
with open('./StopWords.txt', encoding="utf-8") as f:stopwords.update(word.strip() for word in f)
keywords = {word: score for word, score in keywords.items() if word not in stopwords}
3、使用jieba进行中文分词:
result = jieba.analyse.textrank(cleaned_comments, topK=150, withWeight=True)
3、用词云进行展示
1、创建词云对象:
wordcloud = WordCloud(font_path="simhei.ttf", mask=np.array(bg_pic), background_color="white",max_font_size=80, stopwords=stopwords).generate_from_frequencies(keywords)
2、展示词云:
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
3、打印成功信息:
print('词云展示成功!')
四、实现代码
import warnings
import jieba
import jieba.analyseimport re
import matplotlib.pyplot as plt
import requests
from bs4 import BeautifulSoup as bs
from wordcloud import WordCloud, STOPWORDS# 忽略警告
warnings.filterwarnings("ignore")# 设置matplotlib图形大小
plt.rcParams['figure.figsize'] = (10.0, 5.0)# 分析网页函数
def getNowPlayingMovieList():url = 'https://movie.douban.com/nowplaying/guangzhou'headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0'}try:resp = requests.get(url, headers=headers)resp.raise_for_status() # 检查请求是否成功html = resp.textexcept requests.exceptions.HTTPError as errh:print(f"HTTP错误: {errh}")return []except requests.exceptions.RequestException as err:print(f"请求错误: {err}")return []soup = bs(html, 'html.parser')nowplaying_movie = soup.find('div', id='nowplaying')if not nowplaying_movie:return []nowplaying_movie_list = nowplaying_movie.find_all('li', class_='list-item')nowplaying_list = []for item in nowplaying_movie_list:nowplaying_dict = {}nowplaying_dict['id'] = item['data-subject']nowplaying_dict['name'] = item.find('img')['alt']nowplaying_list.append(nowplaying_dict)return nowplaying_list# 爬取评论函数
def getCommentsById(movieId, pageNum):eachCommentList = []if pageNum <= 0:return eachCommentListstart = (pageNum - 1) * 20url = f'https://movie.douban.com/subject/{movieId}/comments?start={start}&limit=20'headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36 Edg/127.0.0.0'}try:resp = requests.get(url, headers=headers)resp.raise_for_status() # 检查请求是否成功html = resp.textexcept requests.exceptions.HTTPError as errh:print(f"HTTP错误: {errh}")return []except requests.exceptions.RequestException as err:print(f"请求错误: {err}")return []soup = bs(html, 'html.parser')comment_div_lits = soup.find_all('div', class_='comment')for item in comment_div_lits:if item.find('p'):eachCommentList.append(item.find('p').text.strip())return eachCommentListdef main():NowPlayingMovie_list = getNowPlayingMovieList()if not NowPlayingMovie_list:print("没有获取到电影列表")returncommentList = []for i in range(1, 11): # 从第1页到第10页comments_temp = getCommentsById(NowPlayingMovie_list[0]['id'], i) # 选择第几个电影来进行爬虫,[0]为第一个commentList.extend(comments_temp)comments = " ".join(commentList)# 使用正则表达式去掉标点符号和非中文字符pattern = re.compile(r'[^ws]')cleaned_comments = pattern.sub('', comments)# 使用jieba分词进行中文分词result = jieba.analyse.textrank(cleaned_comments, topK=150, withWeight=True)keywords = {word: weight for word, weight in result}# 停用词集合stopwords = set(STOPWORDS)with open('./StopWords.txt', encoding="utf-8") as f:stopwords.update(word.strip() for word in f)# 过滤停用词keywords = {word: score for word, score in keywords.items() if word not in stopwords}# 创建词云wordcloud = WordCloud(font_path="simhei.ttf", background_color="white",max_font_size=80,stopwords=stopwords).generate_from_frequencies(keywords)plt.imshow(wordcloud, interpolation='bilinear')plt.axis("off")plt.show()print('词云展示成功!')if __name__ == "__main__":main()
五、最终效果展示
PS:当然也可以对上述词云进行上面介绍过的形状上的一些处理: