线程池
自定义线程池
import lombok.extern.slf4j.Slf4j;
import org.springframework.core.log.LogDelegateFactory;import java.util.ArrayDeque;
import java.util.Deque;
import java.util.HashSet;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;@Slf4j(topic = "c.TestPool")
public class TestPool {public static void main(String[] args) {ThreadPool threadPool = new ThreadPool(1,1000, TimeUnit.MILLISECONDS, 1, (queue, task)->{//策略:// 1) 死等
// queue.put(task);// 2) 带超时等待
// queue.offer(task, 1500, TimeUnit.MILLISECONDS);// 3) 让调用者放弃任务执行
// log.debug("放弃{}", task);// 4) 让调用者抛出异常
// throw new RuntimeException("任务执行失败 " + task);// 5) 让调用者自己执行任务task.run();});// 任务for (int i = 0; i < 4; i++) {int j = i;threadPool.execute(() -> {try {Thread.sleep(1000L);} catch (InterruptedException e) {e.printStackTrace();}log.debug("{}", j);});}}
}@FunctionalInterface // 拒绝策略
interface RejectPolicy<T> {void reject(BlockingQueue<T> queue, T task);
}@Slf4j(topic = "c.ThreadPool")
class ThreadPool {// 任务队列private BlockingQueue<Runnable> taskQueue;// 线程集合private HashSet<Worker> workers = new HashSet<>();// 核心线程数private int coreSize;// 获取任务时的超时时间private long timeout;private TimeUnit timeUnit;private RejectPolicy<Runnable> rejectPolicy;public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity, RejectPolicy<Runnable> rejectPolicy) {this.coreSize = coreSize;this.timeout = timeout;this.timeUnit = timeUnit;this.taskQueue = new BlockingQueue<>(queueCapcity);this.rejectPolicy = rejectPolicy;}// 执行任务public void execute(Runnable task) {synchronized (workers) {if(workers.size() < coreSize) {// 当任务数没有超过 coreSize 时,直接交给 worker 对象执行Worker worker = new Worker(task);log.debug("新增 worker{}, {}", worker, task);workers.add(worker);worker.start();} else {// 如果任务数超过 coreSize 时,加入任务队列暂存
// taskQueue.put(task);//策略:// 1) 死等// 2) 带超时等待// 3) 让调用者放弃任务执行// 4) 让调用者抛出异常// 5) 让调用者自己执行任务taskQueue.tryPut(rejectPolicy, task);}}}class Worker extends Thread{private Runnable task;public Worker(Runnable task) {this.task = task;}@Overridepublic void run() {// 执行任务// 1) 当 task 不为空,执行任务// 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
// while(task != null || (task = taskQueue.take()) != null) {while(task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {try {log.debug("正在执行...{}", task);task.run();} catch (Exception e) {e.printStackTrace();} finally {task = null;}}synchronized (workers) {log.debug("worker 被移除{}", this);workers.remove(this);}}}
}@Slf4j(topic = "c.BlockingQueue")
class BlockingQueue<T> {// 1. 任务队列private Deque<T> queue = new ArrayDeque<>();// 2. 锁private ReentrantLock lock = new ReentrantLock();// 3. 生产者条件变量private Condition fullWaitSet = lock.newCondition();// 4. 消费者条件变量private Condition emptyWaitSet = lock.newCondition();// 5. 容量private int capcity;public BlockingQueue(int capcity) {this.capcity = capcity;}// 阻塞获取public T take() {lock.lock();try {while (queue.isEmpty()) {try {emptyWaitSet.await();} catch (InterruptedException e) {e.printStackTrace();}}T t = queue.removeFirst();fullWaitSet.signal();return t;} finally {lock.unlock();}}// 带超时阻塞获取public T poll(long timeout, TimeUnit unit) {lock.lock();try {// 将 timeout 统一转换为 纳秒long nanos = unit.toNanos(timeout);while (queue.isEmpty()) {try {// 返回值是剩余时间if (nanos <= 0) {return null;}nanos = emptyWaitSet.awaitNanos(nanos);} catch (InterruptedException e) {e.printStackTrace();}}T t = queue.removeFirst();fullWaitSet.signal();return t;} finally {lock.unlock();}}// 阻塞添加public void put(T task) {lock.lock();try {while (queue.size() == capcity) {try {log.debug("等待加入任务队列 {} ...", task);fullWaitSet.await();} catch (InterruptedException e) {e.printStackTrace();}}log.debug("加入任务队列 {}", task);queue.addLast(task);emptyWaitSet.signal();} finally {lock.unlock();}}// 带超时时间阻塞添加public boolean offer(T task, long timeout, TimeUnit timeUnit) {lock.lock();try {long nanos = timeUnit.toNanos(timeout);while (queue.size() == capcity) {try {if(nanos <= 0) {return false;}log.debug("等待加入任务队列 {} ...", task);nanos = fullWaitSet.awaitNanos(nanos);} catch (InterruptedException e) {e.printStackTrace();}}log.debug("加入任务队列 {}", task);queue.addLast(task);emptyWaitSet.signal();return true;} finally {lock.unlock();}}// 获取大小public int size() {lock.lock();try {return queue.size();} finally {lock.unlock();}}public void tryPut(RejectPolicy<T> rejectPolicy, T task) {lock.lock();try {// 判断队列是否满if(queue.size() == capcity) {rejectPolicy.reject(this, task);} else {// 有空闲log.debug("加入任务队列 {}", task);queue.addLast(task);emptyWaitSet.signal();}} finally {lock.unlock();}}
}
ThreadPoolExecutor
线程池状态
ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量
从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING
这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作进行赋值
// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }
构造方法(重要)
- corePoolSize 核心线程数目 (最多保留的线程数)
- maximumPoolSize 最大线程数目 = 核心线程数目+救急线程数目
- keepAliveTime 生存时间 - 针对救急线程
- unit 时间单位 - 针对救急线程
- workQueue 阻塞队列
- threadFactory 线程工厂 - 可以为线程创建时起个好名字
- handler 拒绝策略
工作方式:
线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务
当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue队列排队,直到有空闲的线程
如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize -corePoolSize数目的线程来救急
如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略
jdk的四种拒绝策略:
- AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略
- CallerRunsPolicy 让调用者运行任务
- DiscardPolicy 放弃本次任务
- DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之
其他框架的拒绝策略:
- Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方便定位问题
- Netty 的实现,是创建一个新线程来执行任务
- ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略
- PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略
当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由 keepAliveTime 和 unit 来控制
newFixedThreadPool
特点:
- 核心线程数 == 最大线程数(没有救急线程被创建),因此也无需超时时间
- 阻塞队列是无界的,可以放任意数量的任务
适用于任务量已知,相对耗时的任务
线程池中的线程都是非守护线程
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;@Slf4j(topic = "c.TestThreadPoolExecutors")
public class TestThreadPoolExecutors {public static void main(String[] args) {ExecutorService pool = Executors.newFixedThreadPool(2);pool.execute(() -> {log.debug("1");});pool.execute(() -> {log.debug("2");});pool.execute(() -> {log.debug("3");});}
}
newCachedThreadPool
特点:
- 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着全部都是救急线程(60s 后可以回收),救急线程可以无限创建
- 队列采用了 SynchronousQueue 实现特点是:它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)
整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲1分钟后释放线程
适合任务数比较密集,但每个任务执行时间较短的情况
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.SynchronousQueue;import static cn.itcast.n2.util.Sleeper.sleep;@Slf4j(topic = "c.TestSynchronousQueue")
public class TestSynchronousQueue {public static void main(String[] args) {SynchronousQueue<Integer> integers = new SynchronousQueue<>();new Thread(() -> {try {log.debug("putting {} ", 1);integers.put(1);log.debug("{} putted...", 1);log.debug("putting...{} ", 2);integers.put(2);log.debug("{} putted...", 2);} catch (InterruptedException e) {e.printStackTrace();}},"t1").start();sleep(1);new Thread(() -> {try {log.debug("taking {}", 1);integers.take();} catch (InterruptedException e) {e.printStackTrace();}},"t2").start();sleep(1);new Thread(() -> {try {log.debug("taking {}", 2);integers.take();} catch (InterruptedException e) {e.printStackTrace();}},"t3").start();}
}
newSingleThreadExecutor
使用场景:希望多个任务排队执行,线程数固定为 1,任务数多于 1 时,会放入无界队列排队,任务执行完毕,这唯一的线程也不会被释放
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;@Slf4j(topic = "c.TestExecutors")
public class TestExecutors {public static void main(String[] args) throws InterruptedException {test2();}public static void test2() {ExecutorService pool = Executors.newSingleThreadExecutor();pool.execute(() -> {log.debug("1");int i = 1 / 0;});pool.execute(() -> {log.debug("2");});pool.execute(() -> {log.debug("3");});}private static void test1() {ExecutorService pool = Executors.newFixedThreadPool(2, new ThreadFactory() {private AtomicInteger t = new AtomicInteger(1);@Overridepublic Thread newThread(Runnable r) {return new Thread(r, "mypool_t" + t.getAndIncrement());}});pool.execute(() -> {log.debug("1");});pool.execute(() -> {log.debug("2");});pool.execute(() -> {log.debug("3");});}
}
区别:
1.自己创建一个单线程串行执行任务,如果任务执行失败而终止,那么没有任何补救措施,而线程池还会新建一个线程,保证池的正常工作
2.Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改
- FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法
3.Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改
- 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改
提交任务
import lombok.extern.slf4j.Slf4j;import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;@Slf4j(topic = "c.TestSubmit")
public class TestSubmit {public static void main(String[] args) throws ExecutionException, InterruptedException {ExecutorService pool = Executors.newFixedThreadPool(1);}private static void method3(ExecutorService pool) throws InterruptedException, ExecutionException {String result = pool.invokeAny(Arrays.asList(() -> {log.debug("begin 1");Thread.sleep(1000);log.debug("end 1");return "1";},() -> {log.debug("begin 2");Thread.sleep(500);log.debug("end 2");return "2";},() -> {log.debug("begin 3");Thread.sleep(2000);log.debug("end 3");return "3";}));log.debug("{}", result);}private static void method2(ExecutorService pool) throws InterruptedException {List<Future<String>> futures = pool.invokeAll(Arrays.asList(() -> {log.debug("begin");Thread.sleep(1000);return "1";},() -> {log.debug("begin");Thread.sleep(500);return "2";},() -> {log.debug("begin");Thread.sleep(2000);return "3";}));futures.forEach( f -> {try {log.debug("{}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});}private static void method1(ExecutorService pool) throws InterruptedException, ExecutionException {Future<String> future = pool.submit(() -> {log.debug("running");Thread.sleep(1000);return "ok";});log.debug("{}", future.get());}
}
关闭线程池
shutdown
shutdownNow
其他方法
import lombok.extern.slf4j.Slf4j;import java.util.List;
import java.util.concurrent.*;import static cn.itcast.n2.util.Sleeper.sleep;@Slf4j(topic = "c.TestShutDown")
public class TestShutDown {public static void main(String[] args) throws ExecutionException, InterruptedException {ExecutorService pool = Executors.newFixedThreadPool(2);Future<Integer> result1 = pool.submit(() -> {log.debug("task 1 running...");Thread.sleep(1000);log.debug("task 1 finish...");return 1;});Future<Integer> result2 = pool.submit(() -> {log.debug("task 2 running...");Thread.sleep(1000);log.debug("task 2 finish...");return 2;});Future<Integer> result3 = pool.submit(() -> {log.debug("task 3 running...");Thread.sleep(1000);log.debug("task 3 finish...");return 3;});log.debug("shutdown");pool.shutdown();pool.awaitTermination(3, TimeUnit.SECONDS);List<Runnable> runnables = pool.shutdownNow();log.debug("other.... {}" , runnables);}
}
异步模式之工作线程
定义
让有限的工作线程(Worker Thread)来轮流异步处理无限多的任务,也可以将其归类为分工模式,它的典型实现就是线程池,也体现了经典设计模式中的享元模式
注意:不同任务类型应该使用不同的线程池,这样能够避免饥饿,并能提升效率
饥饿
固定大小线程池会有饥饿现象
解决方法:不同的任务类型采用不同的线程池
import lombok.extern.slf4j.Slf4j;import java.util.Arrays;
import java.util.List;
import java.util.Random;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;@Slf4j(topic = "c.TestDeadLock")
public class TestStarvation {static final List<String> MENU = Arrays.asList("地三鲜", "宫保鸡丁", "辣子鸡丁", "烤鸡翅");static Random RANDOM = new Random();static String cooking() {return MENU.get(RANDOM.nextInt(MENU.size()));}public static void main(String[] args) {ExecutorService waiterPool = Executors.newFixedThreadPool(1);ExecutorService cookPool = Executors.newFixedThreadPool(1);waiterPool.execute(() -> {log.debug("处理点餐...");Future<String> f = cookPool.submit(() -> {log.debug("做菜");return cooking();});try {log.debug("上菜: {}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});waiterPool.execute(() -> {log.debug("处理点餐...");Future<String> f = cookPool.submit(() -> {log.debug("做菜");return cooking();});try {log.debug("上菜: {}", f.get());} catch (InterruptedException | ExecutionException e) {e.printStackTrace();}});}
}
创建多少线程池合适
- 过小会导致程序不能充分地利用系统资源、容易导致饥饿
- 过大会导致更多的线程上下文切换,占用更多内存
CPU密集型运算
通常采用 cpu 核数 + 1 能够实现最优的 CPU 利用率,+1 是保证当线程由于页缺失故障(操作系统)或其他原因导致暂停时,额外的这个线程就能顶上去,保证 CPU 时钟周期不被浪费
I/O密集型运算
CPU 不总是处于繁忙状态,例如,当执行业务计算时,这时候会使用 CPU 资源,但当执行 I/O 操作、远程 RPC 调用时,包括进行数据库操作时,这时候 CPU 就闲下来了,可以利用多线程提高它的利用率
经验公式如下:
线程数 = 核数 * 期望 CPU 利用率 * 总时间(CPU计算时间+等待时间) / CPU 计算时间
例如 4 核 CPU 计算时间是 10% ,其它等待时间是 90%,期望 cpu 被 100% 利用,套用公式
4 * 100% * 100% / 10% = 40
任务调度线程池
在任务调度线程池功能加入之前,可以使用 java.util.Timer 来实现定时功能,Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的,同一时间只能有一个任务在执行,前一个任务的延迟或异常都将会影响到之后的任务
使用ScheduledExecutorService改写:
scheduleAtFixedRate:每隔一秒执行一次
scheduleAtFixedRate(任务执行时间超过了间隔时间):
一开始,延时 1s,接下来,由于任务执行时间 > 间隔时间,间隔被撑到了 2s
scheduleWithFixedDelay:
一开始,延时 1s,scheduleWithFixedDelay 的间隔是 上一个任务结束 -> 延时 -> 下一个任务开始 所以间隔都是 3s
整个线程池表现为:线程数固定,任务数多于线程数时,会放入无界队列排队,任务执行完毕,这些线程也不会被释放,用来执行延迟或反复执行的任务
import lombok.extern.slf4j.Slf4j;import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.*;import static cn.itcast.n2.util.Sleeper.sleep;@Slf4j(topic = "c.TestTimer")
public class TestTimer {public static void main(String[] args) throws ExecutionException, InterruptedException {/*ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);pool.schedule(() -> {try {log.debug("task1");int i = 1 / 0;} catch (Exception e) {log.error("error:", e);}}, 1, TimeUnit.SECONDS);*/ExecutorService pool = Executors.newFixedThreadPool(1);pool.submit(() -> {try {log.debug("task1");int i = 1 / 0;} catch (Exception e) {log.error("error:", e);}});}private static void method3() {ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);log.debug("start...");pool.scheduleAtFixedRate(() -> {log.debug("running...");}, 1, 1, TimeUnit.SECONDS);}private static void method2(ScheduledExecutorService pool) {pool.schedule(() -> {log.debug("task1");int i = 1 / 0;}, 1, TimeUnit.SECONDS);pool.schedule(() -> {log.debug("task2");}, 1, TimeUnit.SECONDS);}private static void method1() {Timer timer = new Timer();TimerTask task1 = new TimerTask() {@Overridepublic void run() {log.debug("task 1");sleep(2);}};TimerTask task2 = new TimerTask() {@Overridepublic void run() {log.debug("task 2");}};log.debug("start...");timer.schedule(task1, 1000);timer.schedule(task2, 1000);}
}
正确处理执行任务异常
方法1:主动捉异常
方法2:使用 Future
应用:定时执行
import java.time.DayOfWeek;
import java.time.Duration;
import java.time.LocalDateTime;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;public class TestSchedule {// 如何让每周四 18:00:00 定时执行任务?public static void main(String[] args) {// 获取当前时间LocalDateTime now = LocalDateTime.now();System.out.println(now);// 获取周四时间LocalDateTime time = now.withHour(18).withMinute(0).withSecond(0).withNano(0).with(DayOfWeek.THURSDAY);// 如果 当前时间 > 本周周四,必须找到下周周四if(now.compareTo(time) > 0) {time = time.plusWeeks(1);}System.out.println(time);// initailDelay 代表当前时间和周四的时间差// period 一周的间隔时间long initailDelay = Duration.between(now, time).toMillis();long period = 1000 * 60 * 60 * 24 * 7;ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);pool.scheduleAtFixedRate(() -> {System.out.println("running...");}, initailDelay, period, TimeUnit.MILLISECONDS);}
}
Tomcat线程池
- LimitLatch 用来限流,可以控制最大连接个数,类似 J.U.C 中的 Semaphore
- Acceptor 只负责【接收新的 socket 连接】
- Poller 只负责监听 socket channel 是否有【可读的 I/O 事件】
- 一旦可读,封装一个任务对象(socketProcessor),提交给 Executor 线程池处理
- Executor 线程池中的工作线程最终负责【处理请求】
Tomcat 线程池扩展了 ThreadPoolExecutor,行为稍有不同
- 如果总线程数达到 maximumPoolSize 这时不会立刻抛 RejectedExecutionException 异常 ,而是再次尝试将任务放入队列,如果还失败,才抛出 RejectedExecutionException 异常
源码tomcat-7.0.42
TaskQueue.java
Connector 配置
Executor 线程配置
Fork/Join
概念
Fork/Join 是 JDK 1.7 加入的新的线程池实现,它体现的是一种分治思想,适用于能够进行任务拆分的 cpu 密集型运算
所谓的任务拆分,是将一个大任务拆分为算法上相同的小任务,直至不能拆分可以直接求解。跟递归相关的一些计算,如归并排序、斐波那契数列、都可以用分治思想进行求解
Fork/Join 在分治的基础上加入了多线程,可以把每个任务的分解和合并交给不同的线程来完成,进一步提升了运算效率
Fork/Join 默认会创建与 cpu 核心数大小相同的线程池
使用
提交给 Fork/Join 线程池的任务需要继承 RecursiveTask(有返回值)或 RecursiveAction(没有返回值),例如下面定义了一个对 1~n 之间的整数求和的任务
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;@Slf4j(topic = "c.TestForkJoin2")
public class TestForkJoin2 {public static void main(String[] args) {// 4个线程ForkJoinPool pool = new ForkJoinPool(4);System.out.println(pool.invoke(new MyTask(5)));// new MyTask(5) 5+ new MyTask(4) 4 + new MyTask(3) 3 + new MyTask(2) 2 + new MyTask(1)}
}// 1~n 之间整数的和
@Slf4j(topic = "c.MyTask")
class MyTask extends RecursiveTask<Integer> {private int n;public MyTask(int n) {this.n = n;}@Overridepublic String toString() {return "{" + n + '}';}@Overrideprotected Integer compute() {// 如果 n 已经为 1,可以求得结果了if (n == 1) {log.debug("join() {}", n);return n;}// 将任务进行拆分(fork)AddTask1 t1 = new AddTask1(n - 1);t1.fork();log.debug("fork() {} + {}", n, t1);// 合并(join)结果int result = n + t1.join();log.debug("join() {} + {} = {}", n, t1, result);return result;}
}
改进:
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveTask;public class TestForkJoin {public static void main(String[] args) {ForkJoinPool pool = new ForkJoinPool(4);System.out.println(pool.invoke(new AddTask3(1, 5)));}
}@Slf4j(topic = "c.AddTask")
class AddTask3 extends RecursiveTask<Integer> {int begin;//1int end;//5public AddTask3(int begin, int end) {this.begin = begin;this.end = end;}@Overridepublic String toString() {return "{" + begin + "," + end + '}';}@Overrideprotected Integer compute() {if (begin == end) {log.debug("join() {}", begin);return begin;}if (end - begin == 1) {log.debug("join() {} + {} = {}", begin, end, end + begin);return end + begin;}//3int mid = (end + begin) / 2;AddTask3 t1 = new AddTask3(begin, mid);//1 3t1.fork();AddTask3 t2 = new AddTask3(mid + 1, end);//4 5t2.fork();log.debug("fork() {} + {} = ?", t1, t2);int result = t1.join() + t2.join();log.debug("join() {} + {} = {}", t1, t2, result);return result;}
}
J.U.C
AQS原理
概述
AQS,全称是 AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架
特点:
1.用 state 属性来表示资源的状态(分独占模式和共享模式),子类需要定义如何维护这个状态,控制如何获取锁和释放锁
- getState - 获取 state 状态
- setState - 设置 state 状态
- compareAndSetState - cas 机制设置 state 状态
- 独占模式是只有一个线程能够访问资源,而共享模式可以允许多个线程访问资源
2.提供了基于 FIFO 的等待队列,类似于 Monitor 的 EntryList
3.条件变量来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor 的 WaitSet
子类主要实现这样一些方法(默认抛出 UnsupportedOperationException):
- tryAcquire
- tryRelease
- tryAcquireShared
- tryReleaseShared
- isHeldExclusively
获取锁的姿势:
释放锁的姿势:
实现不可重入锁
import lombok.extern.slf4j.Slf4j;import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.AbstractQueuedSynchronizer;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;import static cn.itcast.n2.util.Sleeper.sleep;@Slf4j(topic = "c.TestAqs")
public class TestAqs {public static void main(String[] args) {MyLock lock = new MyLock();new Thread(() -> {lock.lock();try {log.debug("locking...");sleep(1);} finally {log.debug("unlocking...");lock.unlock();}},"t1").start();new Thread(() -> {lock.lock();try {log.debug("locking...");} finally {log.debug("unlocking...");lock.unlock();}},"t2").start();}
}// 自定义锁(不可重入锁)
class MyLock implements Lock {// 独占锁 同步器类class MySync extends AbstractQueuedSynchronizer {//尝试获取锁@Overrideprotected boolean tryAcquire(int arg) {if(compareAndSetState(0, 1)) {// 加上了锁,并设置 owner 为当前线程setExclusiveOwnerThread(Thread.currentThread());return true;}return false;}//尝试释放锁@Overrideprotected boolean tryRelease(int arg) {//表示没有线程占用setExclusiveOwnerThread(null);setState(0);return true;}@Override // 是否持有独占锁protected boolean isHeldExclusively() {return getState() == 1;}public Condition newCondition() {return new ConditionObject();}}private MySync sync = new MySync();@Override // 加锁(不成功会进入等待队列)public void lock() {sync.acquire(1);}@Override // 加锁,可打断public void lockInterruptibly() throws InterruptedException {sync.acquireInterruptibly(1);}@Override // 尝试加锁(一次)public boolean tryLock() {return sync.tryAcquire(1);}@Override // 尝试加锁,带超时public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {return sync.tryAcquireNanos(1, unit.toNanos(time));}@Override // 解锁public void unlock() {sync.release(1);}@Override // 创建条件变量public Condition newCondition() {return sync.newCondition();}
}