欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 财经 > 金融 > 【NeRF及其代码NeRF-Pytorch实现】

【NeRF及其代码NeRF-Pytorch实现】

2025/2/23 20:58:16 来源:https://blog.csdn.net/BubbleCodes/article/details/140984421  浏览:    关键词:【NeRF及其代码NeRF-Pytorch实现】

文章目录

  • 模型输入和输出
  • NeRF-Pytorch代码
  • 参考

  • 在没有仔细学习过NeRF之前,对于NeRF的直观感受是,它是对某个场景三维模型的一个拟合,并且实现了一个渲染的效果,即输入相机位姿信息,输出对应位姿信息的渲染图像。
  • NeRF训练的过程实际上是三维重建/反渲染的过程,即通过渲染的图片来得到三维模型的隐式表达。而NeRF模型训练完成之后的推理过程是渲染过程。
    在这里插入图片描述

模型输入和输出

  • 直观理解的网络
    在这里插入图片描述

  • 实际实现的细节
    在这里插入图片描述
    在这里插入图片描述

  • 输入(理解层面是相机位姿,实际是采样点的位置和观测角度):5D的相机位姿信息 ( x , y , z , θ , ϕ ) (x, y, z, \theta, \phi) (x,y,z,θ,ϕ),其中包括了相机的三维位置以及角度(包括俯仰角和方位角)。但是在实际代码实现过程中使用两个(x, y, z)来代替5D的位姿信息,并且使用了位置编码(用于增强)的方式来编码6D坐标,最后得到63维+27维的输入。并且作者认为采样点不透明度与观测角度无关,只与采样点位置有关,所以采用了分开输入的方式,只使用相机坐标63维来预测不透明度,并在随后的层中cat进代表相机方向的坐标27维。

  • 输出:NeRF采用体积雾的渲染方式,NeRF模型的直接输出为采样点的颜色RGB以及不透明度信息,通过后处理(体积渲染进行积分,后面会提到)的方式得到最终渲染好的图像。

  • NeRF模型直接输出的含义:一段采样点上的RGBA值,在射线方向上进行积分得到最终一个像素点颜色值(体积雾渲染)。

  • 位置编码(增强高频信息):对于位置xyz坐标(对于两个不同的位置坐标都采用了位置编码,但是所使用的项数不同,相机位置使用10,而相机方向的坐标使用4),文章采用了位置编码的方式,具体而言,对于每个维度,使用cos和sin来编码,并且对于每个cos和sin,都是用了十项,所以输入维度变成 3 + ( 10 + 10 ) ∗ 3 = 63 3+(10+10)*3=63 3+(10+10)3=63
    在这里插入图片描述

  • 训练资料:一个像素+一个相机位姿,而不是一张图+一个相机位姿。一个batch包含很多不同位置像素+位姿。

  • 体积渲染:其中特定的积分方式考虑了遮挡问题(主要考虑第一个波峰的贡献)。采样点个数也是一个超参数。
    在这里插入图片描述

  • 分层采样
    在这里插入图片描述

NeRF-Pytorch代码

参考

  • 中恩实验室

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词