欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 美食 > 动手学Agent——Day2

动手学Agent——Day2

2025/2/21 3:30:23 来源:https://blog.csdn.net/qq_38869560/article/details/145640240  浏览:    关键词:动手学Agent——Day2

一、用 Llama-index 创建 Agent

LlamaIndex 实现 Agent,需要导入:

  • Function Tool:将工具函数放在 Function Tool 对象中
    • 工具函数 -> 完成 Agent 任务。⚠️大模型会根据函数注释来判断使用哪个函数来完成任务,所以,注释一定要写清楚函数功能和返回值
  • ReActAgent:通过结合推理(Reasoning)和行动(Acting)来创建动态的 LLM Agent 的框架
    • 初始推理:agent首先进行推理步骤,以理解任务、收集相关信息并决定下一步行为
    • 行动:agent基于其推理采取行动——例如查询API、检索数据或执行命令
    • 观察:agent观察行动的结果并收集任何新的信息
    • 优化推理:利用新消息,代理再次进行推理,更新其理解、计划或假设
    • 重复:代理重复该循环,在推理和行动之间交替,直到达到满意的结论或完成任务

二、数据库对话 Agent

三、RAG 接入Agent

https://github.com/deepseek-ai/DeepSeek-R1/blob/main/README.md

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词