欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 养生 > 基于知识图谱的问答系统:后端Python+Flask,数据库Neo4j,前端Vue3(提供源码)

基于知识图谱的问答系统:后端Python+Flask,数据库Neo4j,前端Vue3(提供源码)

2025/2/22 2:06:39 来源:https://blog.csdn.net/qq_27574367/article/details/145720768  浏览:    关键词:基于知识图谱的问答系统:后端Python+Flask,数据库Neo4j,前端Vue3(提供源码)

基于知识图谱的问答系统:后端Python+Flask,数据库Neo4j,前端Vue3

在这里插入图片描述

引言

随着人工智能技术的不断发展,知识图谱作为一种结构化的知识表示方式,逐渐成为问答系统的重要组成部分。本文将介绍如何构建一个基于知识图谱的问答系统,使用Python和Flask作为后端框架,Neo4j作为图数据库,Vue3作为前端框架。通过本文,你将了解到如何将知识图谱与问答系统结合,并实现一个简单的问答应用。

1. 知识图谱简介

知识图谱是一种以图结构表示知识的方式,节点代表实体,边代表实体之间的关系。知识图谱能够有效地组织和存储复杂的知识,并为问答系统提供结构化的数据支持。通过知识图谱,问答系统可以更准确地理解用户的问题,并提供精确的答案。
在这里插入图片描述

2. 系统架构设计

2.1 后端:Python + Flask

后端采用Python语言,并使用Flask框架构建RESTful API。Flask是一个轻量级的Web框架,适合快速开发小型应用。后端的主要职责包括:

  • 接收前端发送的用户问题。
  • 解析问题并生成Cypher查询语句。
  • 与Neo4j数据库交互,获取查询结果。
  • 将结果返回给前端。

2.2 数据库:Neo4j

Neo4j是一个高性能的图数据库,专门用于存储和查询图结构数据。在知识图谱中,Neo4j能够高效地存储实体和关系,并支持复杂的图查询操作。通过Cypher查询语言,我们可以轻松地从知识图谱中提取所需的信息。

2.3 前端:Vue3

前端采用Vue3框架,Vue3是一个现代化的JavaScript框架,具有响应式数据绑定和组件化开发的特点。前端的主要职责包括:

  • 提供用户界面,允许用户输入问题。
  • 将用户问题发送到后端API。
  • 接收并展示后端返回的答案。

3. 实现步骤

3.1 知识图谱构建

首先,我们需要构建一个简单的知识图谱。假设我们有一个关于疾病 知识的知识图谱,包含临床表现、并发症、诊断检查、治疗方法、预防、病因、恢复期处理等实体及其关系。我们可以使用Neo4j来创建这些节点和关系。

def create_nodes_and_relationships(disease, category, detail):# 创建或获取疾病节点disease_node = graph.nodes.match("Disease", name=disease).first()if not disease_node:disease_node = Node("Disease", name=disease)graph.create(disease_node)relationship = Noneif category == "临床表现":# 创建或获取临床表现节点detail_node = graph.nodes.match("ClinicalManifestation", name=detail).first()if not detail_node:detail_node = Node("ClinicalManifestation", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "临床表现", detail_node)elif category == "并发症":# 创建或获取并发症节点detail_node = graph.nodes.match("Complication", name=detail).first()if not detail_node:detail_node = Node("Complication", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "并发症", detail_node)elif category == "诊断检查":# 创建或获取诊断检查节点detail_node = graph.nodes.match("DiagnosticTest", name=detail).first()if not detail_node:detail_node = Node("DiagnosticTest", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "诊断检查", detail_node)elif category == "治疗方法":# 创建或获取诊断检查节点detail_node = graph.nodes.match("TreatmentMethod", name=detail).first()if not detail_node:detail_node = Node("TreatmentMethod", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "治疗方法", detail_node)elif category == "预防":# 创建或获取诊断检查节点detail_node = graph.nodes.match("Prevention", name=detail).first()if not detail_node:detail_node = Node("Prevention", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "预防", detail_node)elif category == "病因":# 创建或获取诊断检查节点detail_node = graph.nodes.match("Cause", name=detail).first()if not detail_node:detail_node = Node("Cause", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "病因", detail_node)elif category == "恢复期处理":# 创建或获取诊断检查节点detail_node = graph.nodes.match("RecoveryPhaseManagement", name=detail).first()if not detail_node:detail_node = Node("RecoveryPhaseManagement", name=detail)graph.create(detail_node)# 创建关系relationship = Relationship(disease_node, "恢复期处理", detail_node)# 创建关系if relationship is not None:graph.create(relationship)

3.2 后端实现

在后端,我们使用Flask创建一个简单的API,接收用户的问题并返回答案。以下是一个简单的Flask应用示例:

@app.route('/chat_message', methods=['GET', 'POST'])
def chat_message():neo4j_db_handle = neo4j_db()question = request.json.get('input')json_data = neo4j_db_handle.chat_(question)return jsonify({"code": 200,"data": json_data})if __name__ == '__main__':app.run(debug=True)

3.3 前端实现

在前端,我们使用Vue3创建一个简单的用户界面,允许用户输入问题并显示答案。以下是一个简单的Vue3组件示例:

<template><lay-container fluid="true" style="padding-top: 14px"><lay-card><lay-form style="margin-top: 10px"><lay-row><lay-col :md="10"><lay-form-item label="节点名称" label-width="80"><lay-inputv-model="searchQuery.name"placeholder="请输入"size="sm":allow-clear="true"style="width: 98%"></lay-input></lay-form-item></lay-col><lay-col :md="5"><lay-form-item label-width="20"><lay-buttonstyle="margin-left: 20px"type="primary"size="sm"@click="getGraph">查询</lay-button><lay-button size="sm" @click="toReset"> 重置</lay-button></lay-form-item></lay-col></lay-row></lay-form></lay-card><NeoV :data="datasource" :styles="neoStyles"/></lay-container>
</template>
<script setup lang="ts">
import {onMounted, ref} from 'vue'
import NeoV from './../../component/NeoV.vue'
import Http from "@/api/http";const loading = ref(false)
const neoStyles = ref({})
neoStyles.value = {width: "100%",height: "calc(100vh - 130px)"
}
let datasource = ref<any>([])
const searchQuery = ref({name: '',
})function toReset() {searchQuery.value = {name: '',}
}async function getGraph() {loading.value = trueHttp.post("/search_name_kg", searchQuery.value).then((res) => {datasource.value = res.data}).finally(() => (loading.value = false));
}onMounted(() => {getGraph()
})
</script><style scoped>.search-input {display: inline-block;width: 98%;margin-right: 10px;
}</style>

4. 总结

本文介绍了如何构建一个基于知识图谱的问答系统,使用Python和Flask作为后端框架,Neo4j作为图数据库,Vue3作为前端框架。通过知识图谱,问答系统能够更准确地理解用户的问题,并提供精确的答案。希望本文能够帮助你理解知识图谱在问答系统中的应用,并为你的项目提供参考。

5. 参考资料

  • Neo4j官方文档
  • Flask官方文档
  • Vue3官方文档

六. 系统展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如果你对本文有任何疑问或建议,欢迎在评论区留言!

如需源码,可点击下方卡片

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词