欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 养生 > 考研数学非数竞赛复习之Stolz定理求解数列极限

考研数学非数竞赛复习之Stolz定理求解数列极限

2025/3/12 18:53:07 来源:https://blog.csdn.net/weixin_73953650/article/details/146118171  浏览:    关键词:考研数学非数竞赛复习之Stolz定理求解数列极限

        

        在非数类大学生数学竞赛中,Stolz定理作为一种强大的工具,经常被用来解决和式数列极限的问题,也被誉为离散版的’洛必达’方法,它提供了一种简洁而有效的方法,使得原本复杂繁琐的极限计算过程变得直观明了。本文,我们将通过几个例题介绍该定理的使用方法。

stolz定理

        1.设数列\left \{ a_n \right \},\left \{ b_n \right \}满足:\left \{ b_n \right \}严格单调递增

        且\lim_{n\to\infty}\left \{ b_n \right \}=\infty

        \lim_{n\to\infty}\left \{ a_n \right \}=\infty

        若\lim_{n\to\infty}\frac{a_n-a_n-1}{b_n-b_n-1}=L

        则\lim_{n\to\infty}\frac{a_n}{b_n}=L

        此为\frac{\infty}{\infty}型未定式


        2.设数列\left \{ a_n \right \},\left \{ b_n \right \}满足:\left \{ b_n \right \}严格单调递减

        且\lim_{n\to\infty}\left \{ b_n \right \}=0

        \lim_{n\to\infty}\left \{ a_n \right \}=0

        若\lim_{n\to\infty}\frac{a_n-a_n-1}{b_n-b_n-1}=L

        则\lim_{n\to\infty}\frac{a_n}{b_n}=L

        此为\frac{0}{0}型未定式

        定理看起来非常简单易懂,且该定理与洛必达公式形似。洛必达公式描述的是函数的导数的极限与原函数的极限之间的关系,该定理描述的是数列差分后的极限与原数列极限之间的关系。

 例题


1.\lim_{n\to0}\frac{1+\sqrt{2}+\sqrt[3]{3}+...\sqrt[n]{n}}{n}\frac{\infty}{\infty}

解:设a_n=1+\sqrt{2}+\sqrt[3]{3}+...\sqrt[n]{n},b_n=n

     a_n=\sum_{k=1}^{n}\sqrt[k]{k}

     a_{n-1}=\sum_{k=1}^{n-1}\sqrt[k]{k}

     a_n-a_{n-1}=\sqrt[n]{n}

     b_n-b_{n-1}=n-(n-1)=1

    设L=\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=\lim_{n\to\infty}\frac{\sqrt[n]{n}}{1}

     则L=\lim_{n\to\infty}e^{\frac{\ln n}{n}}=e^{\lim_{n\to\infty}\frac{\ln n}{n}}

     L=e^{0}=1

那么,原式极限结果为1


2.\lim_{n\to\infty}\frac{1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}}{\sqrt{n+1}+\sqrt{n+2}+...\sqrt{n+n}}\frac{\infty}{\infty}

解: 设a_n=1+\sqrt{2}+\sqrt{3}+...+\sqrt{n}=\sum_{k=1}^{n}\sqrt{k}

     a_{n-1}=\sum_{k=1}^{n-1}\sqrt{k}

     b_n=\sqrt{n+1}+\sqrt{n+2}+...\sqrt{n+n}

 (b_n每一项内第一个n与其下标一致)

注意,对于b_n来说,经过观察我们不难发现b_{n-1}不单单意味着原数列的前n-1项,同时我们还应该将b_n每一项内第一个n更改为n-1。即b_{n-1}=\sum_{k=1}^{n-1}\sqrt{n-1+k}

      b_{n-1}=\sqrt{n-1+1}+\sqrt{n-1+2}+...+\sqrt{n-1+n-1}

      则a_n-a_{n-1}=\sqrt{n}

      b_n-b_{n-1}=\sqrt{2n}+\sqrt{2n-1}-\sqrt{n}

     L=\lim_{n\to\infty}\frac{a_{n-1}}{b_{n-1}}=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{2n-1}+\sqrt{2n}-\sqrt{n}}

利用'抓大头'思想不难得到L=\frac{1}{2\sqrt{2}-1}

 那么,原式极限结果=\frac{1}{2\sqrt{2}-1}


3.\lim_{n\to\infty}n\begin{pmatrix} \sum_{k=1}^{n}\frac{1}{n+k}-ln2 \end{pmatrix}\frac{0}{0}

原式=\lim_{n\to\infty}\frac{\begin{pmatrix} \sum_{k=1}^{n}\frac{1}{n+k}-ln2 \end{pmatrix}}{\frac{1}{n}}

a_n=\sum_{k=1}^{n}\frac{1}{n+k},b_n=\frac{1}{n}

对于分子来说\lim_{n\to\infty}\sum _{k=1}^{n}\frac{1}{n+k}

可以变形为\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{n}\frac{1}{1+\frac{k}{n}}=\int_{0}^{1}\frac{1}{1+x}dx=ln2

对于分母来说\lim_{n\to\infty}\frac{1}{n}=0

因此该极限满足\frac{0}{0}型未定式

L=\lim_{n\to\infty}\frac{a_{n-1}}{b_{n-1}}

L=\lim_{n\to\infty}\frac{\sum_{k=1}^{n}\frac{1}{n+k}-ln2-\sum_{k=1}^{n-1}\frac{1}{n-1+k}+ln2}{\frac{1}{n}-\frac{1}{n-1}}

L=lim_{n\to\infty}\frac{\frac{1}{2n}+\frac{1}{2n-1}-\frac{1}{n}{}}{\frac{-1}{n(n-1)}}

L=\lim_{n\to\infty}\frac{-n(n+1)}{(2n-1)(2n)}

利用'抓大头'思想不难得到L=-\frac{1}{4}

那么原式极限结果为-\frac{1}{4}

总结

        使用stolz定理求解数列极限,特别是和式极限时一定要化简至\frac{a_n}{b_n}的形式,并且在计算

\lim_{n\to\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}时要格外注意数列差分结果的计算,不要只是简单的将n-1带入(特别是和式极限)

        拿不准可以多展开几项,观察数列通项。

        以上便是使用stolz定理求解数列极限时所有需要注意的地方,看完这篇文章,我相信你又将掌握一个求极限的利器。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词