为了优化FBG重叠光谱寻峰解调的轻量化卷积神经网络算法,将RMSE降低到10pm以下且准确度达到99%以上,下面为你介绍三个类似的轻量化算法,并提供使用Python实现的示例代码。
1. MobileNetV2
MobileNetV2 是一种轻量级的卷积神经网络,它使用了倒置残差结构和线性瓶颈层,能够在减少参数数量的同时保持较高的性能。
import tensorflow as tf
from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import numpy as np# 假设输入数据的形状
input_shape = (224, 224, 3)# 加载预训练的MobileNetV2模型
base_model = MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet')# 冻结预训练模型的所有层
for layer in base_model.layers:layer.trainable = False# 添加自定义层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(1, activation='linear')(x)# 构建新的模型
model = Model(inputs=base_model.input, outputs=predictions)# 编译模型
model.compile(optimizer=Adam(lr=0.001), loss='mse')# 生成一些示例数据
x_train = np.random.rand(100, 224, 224, 3)
y_train = np.random.rand(100, 1)# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)
2. ShuffleNetV2
ShuffleNetV2 是一种高效的轻量级卷积神经网络,它通过引入通道洗牌操作来提高网络的效率。
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, DepthwiseConv2D, BatchNormalization, Activation, GlobalAveragePooling2D, Dense, Concatenate, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import numpy as npdef channel_shuffle(x, groups):height, width, channels = x.shape.as_list()[1:]channels_per_group = channels // groupsx = tf.reshape(x, [-1, height, width, groups, channels_per_group])x = tf.transpose(x, [0, 1, 2, 4, 3])x = tf.reshape(x, [-1, height, width, channels])return xdef shuffle_block(x, filters, strides, groups):if strides == 1:shortcut, x = Lambda(lambda z: tf.split(z, num_or_size_splits=2, axis=-1))(x)x = Conv2D(filters // 2, kernel_size=1, strides=1, padding='same', groups=groups)(x)x = BatchNormalization()(x)x = Activation('relu')(x)x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same')(x)x = BatchNormalization()(x)x = Conv2D(filters // 2, kernel_size=1, strides=1, padding='same', groups=groups)(x)x = BatchNormalization()(x)x = Activation('relu')(x)x = Concatenate()([shortcut, x])else:shortcut = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same')(x)shortcut = BatchNormalization()(shortcut)shortcut = Conv2D(filters // 2, kernel_size=1, strides=1, padding='same', groups=groups)(shortcut)shortcut = BatchNormalization()(shortcut)shortcut = Activation('relu')(shortcut)x = Conv2D(filters // 2, kernel_size=1, strides=1, padding='same', groups=groups)(x)x = BatchNormalization()(x)x = Activation('relu')(x)x = DepthwiseConv2D(kernel_size=3, strides=strides, padding='same')(x)x = BatchNormalization()(x)x = Conv2D(filters // 2, kernel_size=1, strides=1, padding='same', groups=groups)(x)x = BatchNormalization()(x)x = Activation('relu')(x)x = Concatenate()([shortcut, x])x = Lambda(lambda z: channel_shuffle(z, groups))(x)return x# 构建ShuffleNetV2模型
input_shape = (224, 224, 3)
inputs = Input(shape=input_shape)
x = Conv2D(24, kernel_size=3, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = DepthwiseConv2D(kernel_size=3, strides=2, padding='same')(x)
x = BatchNormalization()(x)
x = Conv2D(116, kernel_size=1, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = shuffle_block(x, 116, 1, 2)
x = shuffle_block(x, 116, 1, 2)
x = shuffle_block(x, 232, 2, 2)
x = shuffle_block(x, 232, 1, 2)
x = shuffle_block(x, 232, 1, 2)
x = shuffle_block(x, 232, 1, 2)
x = shuffle_block(x, 464, 2, 2)
x = shuffle_block(x, 464, 1, 2)
x = shuffle_block(x, 464, 1, 2)
x = shuffle_block(x, 464, 1, 2)
x = Conv2D(1024, kernel_size=1, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = GlobalAveragePooling2D()(x)
outputs = Dense(1, activation='linear')(x)model = Model(inputs=inputs, outputs=outputs)# 编译模型
model.compile(optimizer=Adam(lr=0.001), loss='mse')# 生成一些示例数据
x_train = np.random.rand(100, 224, 224, 3)
y_train = np.random.rand(100, 1)# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)
3. GhostNet
GhostNet 是一种轻量级的卷积神经网络,它通过引入幽灵模块来减少计算量和参数数量。
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, DepthwiseConv2D, BatchNormalization, Activation, GlobalAveragePooling2D, Dense, Concatenate
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import numpy as npdef ghost_module(x, filters, kernel_size=1, ratio=2):init_channels = int(np.ceil(filters / ratio))new_channels = int(init_channels * (ratio - 1))x1 = Conv2D(init_channels, kernel_size=kernel_size, strides=1, padding='same')(x)x2 = DepthwiseConv2D(kernel_size=3, strides=1, padding='same')(x1)x2 = Conv2D(new_channels, kernel_size=1, strides=1, padding='same')(x2)x = Concatenate()([x1, x2])[:, :, :, :filters]return x# 构建GhostNet模型
input_shape = (224, 224, 3)
inputs = Input(shape=input_shape)
x = Conv2D(16, kernel_size=3, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = ghost_module(x, 16)
x = ghost_module(x, 24, strides=2)
x = ghost_module(x, 24)
x = ghost_module(x, 40, strides=2)
x = ghost_module(x, 40)
x = ghost_module(x, 80, strides=2)
x = ghost_module(x, 80)
x = ghost_module(x, 80)
x = ghost_module(x, 80)
x = ghost_module(x, 112)
x = ghost_module(x, 112)
x = ghost_module(x, 160, strides=2)
x = ghost_module(x, 160)
x = ghost_module(x, 160)
x = ghost_module(x, 160)
x = Conv2D(960, kernel_size=1, strides=1, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = GlobalAveragePooling2D()(x)
x = Dense(1280, activation='relu')(x)
outputs = Dense(1, activation='linear')(x)model = Model(inputs=inputs, outputs=outputs)# 编译模型
model.compile(optimizer=Adam(lr=0.001), loss='mse')# 生成一些示例数据
x_train = np.random.rand(100, 224, 224, 3)
y_train = np.random.rand(100, 1)# 训练模型
model.fit(x_train, y_train, epochs=10, batch_size=32)
注意事项
- 上述代码中的示例数据是随机生成的,实际使用时需要替换为真实的FBG重叠光谱数据。
- 为了达到RMSE误差在10pm以下的目标,可能需要调整模型的超参数,如学习率、训练轮数等。
- 可以使用交叉验证等方法来评估模型的性能,并进行模型选择和调优。