欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 美食 > 昇思25天学习打卡营第16天 | Vision Transformer图像分类

昇思25天学习打卡营第16天 | Vision Transformer图像分类

2025/1/25 4:34:30 来源:https://blog.csdn.net/qq_31254435/article/details/140498115  浏览:    关键词:昇思25天学习打卡营第16天 | Vision Transformer图像分类

昇思25天学习打卡营第16天 | Vision Transformer图像分类

文章目录

  • 昇思25天学习打卡营第16天 | Vision Transformer图像分类
    • Vision Transform(ViT)模型
      • Transformer
        • Attention模块
        • Encoder模块
      • ViT模型输入
    • 模型构建
      • Multi-Head Attention模块
      • Encoder模块
      • Patch Embedding模块
      • ViT网络
    • 总结
    • 打卡

Vision Transform(ViT)模型

ViT是NLP和CV领域的融合,可以在不依赖于卷积操作的情况下在图像分类任务上达到很好的效果。

ViT模型的主体结构是基于Transformer的Encoder部分。

Transformer

Transformer由很多Encoder和Decoder模块构成,包括多头注意力(Multi-Head Attention)层,Feed Forward层,Normalization层和残差连接(Residual Connection)。
encoder-decoder
多头注意力结构基于自注意力机制(Self-Attention),是多个Self-Attention的并行组成。

Attention模块

Attention的核心在于为输入向量的每个单词学习一个权重。

  1. 最初的输入向量首先经过Embedding层映射为Q(Query),K(Key),V(Value)三个向量。
  2. 通过将Q和所有K进行点乘初一维度平方根,得到向量间的相似度,通过softmax获取每词向量之间的关系权重。
  3. 利用关系权重对词向量的V加权求和,得到自注意力值。
    self-attention
    多头注意力机制只是对self-attention的并行化:
    multi-head-attention
Encoder模块

ViT中的Encoder相对于标准Transformer,主要在于将Normolization放在self-attention和Feed Forward之前,其他结构与标准Transformer相同。
vit-encoder

ViT模型输入

传统Transformer主要应用于自然语言处理的一维词向量,而图像时二维矩阵的堆叠。
在ViT中:

  1. 通过卷积将输入图像在每个channel上划分为 16 × 16 16\times 16 16×16个patch。如果输入 224 × 224 224\times224 224×224的图像,则每一个patch的大小为 14 × 14 14\times 14 14×14
  2. 将每一个patch拉伸为一个一维向量,得到近似词向量堆叠的效果。如将 14 × 14 14\times14 14×14展开为 196 196 196的向量。
    这一部分Patch Embedding用来替换Transformer中Word Embedding,用作网络中的图像输入。

模型构建

Multi-Head Attention模块

from mindspore import nn, opsclass Attention(nn.Cell):def __init__(self,dim: int,num_heads: int = 8,keep_prob: float = 1.0,attention_keep_prob: float = 1.0):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = ms.Tensor(head_dim ** -0.5)self.qkv = nn.Dense(dim, dim * 3)self.attn_drop = nn.Dropout(p=1.0-attention_keep_prob)self.out = nn.Dense(dim, dim)self.out_drop = nn.Dropout(p=1.0-keep_prob)self.attn_matmul_v = ops.BatchMatMul()self.q_matmul_k = ops.BatchMatMul(transpose_b=True)self.softmax = nn.Softmax(axis=-1)def construct(self, x):"""Attention construct."""b, n, c = x.shapeqkv = self.qkv(x)qkv = ops.reshape(qkv, (b, n, 3, self.num_heads, c // self.num_heads))qkv = ops.transpose(qkv, (2, 0, 3, 1, 4))q, k, v = ops.unstack(qkv, axis=0)attn = self.q_matmul_k(q, k)attn = ops.mul(attn, self.scale)attn = self.softmax(attn)attn = self.attn_drop(attn)out = self.attn_matmul_v(attn, v)out = ops.transpose(out, (0, 2, 1, 3))out = ops.reshape(out, (b, n, c))out = self.out(out)out = self.out_drop(out)return out

Encoder模块

from typing import Optional, Dictclass FeedForward(nn.Cell):def __init__(self,in_features: int,hidden_features: Optional[int] = None,out_features: Optional[int] = None,activation: nn.Cell = nn.GELU,keep_prob: float = 1.0):super(FeedForward, self).__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.dense1 = nn.Dense(in_features, hidden_features)self.activation = activation()self.dense2 = nn.Dense(hidden_features, out_features)self.dropout = nn.Dropout(p=1.0-keep_prob)def construct(self, x):"""Feed Forward construct."""x = self.dense1(x)x = self.activation(x)x = self.dropout(x)x = self.dense2(x)x = self.dropout(x)return xclass ResidualCell(nn.Cell):def __init__(self, cell):super(ResidualCell, self).__init__()self.cell = celldef construct(self, x):"""ResidualCell construct."""return self.cell(x) + xclass TransformerEncoder(nn.Cell):def __init__(self,dim: int,num_layers: int,num_heads: int,mlp_dim: int,keep_prob: float = 1.,attention_keep_prob: float = 1.0,drop_path_keep_prob: float = 1.0,activation: nn.Cell = nn.GELU,norm: nn.Cell = nn.LayerNorm):super(TransformerEncoder, self).__init__()layers = []for _ in range(num_layers):normalization1 = norm((dim,))normalization2 = norm((dim,))attention = Attention(dim=dim,num_heads=num_heads,keep_prob=keep_prob,attention_keep_prob=attention_keep_prob)feedforward = FeedForward(in_features=dim,hidden_features=mlp_dim,activation=activation,keep_prob=keep_prob)layers.append(nn.SequentialCell([ResidualCell(nn.SequentialCell([normalization1, attention])),ResidualCell(nn.SequentialCell([normalization2, feedforward]))]))self.layers = nn.SequentialCell(layers)def construct(self, x):"""Transformer construct."""return self.layers(x)

Patch Embedding模块

class PatchEmbedding(nn.Cell):MIN_NUM_PATCHES = 4def __init__(self,image_size: int = 224,patch_size: int = 16,embed_dim: int = 768,input_channels: int = 3):super(PatchEmbedding, self).__init__()self.image_size = image_sizeself.patch_size = patch_sizeself.num_patches = (image_size // patch_size) ** 2self.conv = nn.Conv2d(input_channels, embed_dim, kernel_size=patch_size, stride=patch_size, has_bias=True)def construct(self, x):"""Path Embedding construct."""x = self.conv(x)b, c, h, w = x.shapex = ops.reshape(x, (b, c, h * w))x = ops.transpose(x, (0, 2, 1))return x

ViT网络

from mindspore.common.initializer import Normal
from mindspore.common.initializer import initializer
from mindspore import Parameterdef init(init_type, shape, dtype, name, requires_grad):"""Init."""initial = initializer(init_type, shape, dtype).init_data()return Parameter(initial, name=name, requires_grad=requires_grad)class ViT(nn.Cell):def __init__(self,image_size: int = 224,input_channels: int = 3,patch_size: int = 16,embed_dim: int = 768,num_layers: int = 12,num_heads: int = 12,mlp_dim: int = 3072,keep_prob: float = 1.0,attention_keep_prob: float = 1.0,drop_path_keep_prob: float = 1.0,activation: nn.Cell = nn.GELU,norm: Optional[nn.Cell] = nn.LayerNorm,pool: str = 'cls') -> None:super(ViT, self).__init__()self.patch_embedding = PatchEmbedding(image_size=image_size,patch_size=patch_size,embed_dim=embed_dim,input_channels=input_channels)num_patches = self.patch_embedding.num_patchesself.cls_token = init(init_type=Normal(sigma=1.0),shape=(1, 1, embed_dim),dtype=ms.float32,name='cls',requires_grad=True)self.pos_embedding = init(init_type=Normal(sigma=1.0),shape=(1, num_patches + 1, embed_dim),dtype=ms.float32,name='pos_embedding',requires_grad=True)self.pool = poolself.pos_dropout = nn.Dropout(p=1.0-keep_prob)self.norm = norm((embed_dim,))self.transformer = TransformerEncoder(dim=embed_dim,num_layers=num_layers,num_heads=num_heads,mlp_dim=mlp_dim,keep_prob=keep_prob,attention_keep_prob=attention_keep_prob,drop_path_keep_prob=drop_path_keep_prob,activation=activation,norm=norm)self.dropout = nn.Dropout(p=1.0-keep_prob)self.dense = nn.Dense(embed_dim, num_classes)def construct(self, x):"""ViT construct."""x = self.patch_embedding(x)cls_tokens = ops.tile(self.cls_token.astype(x.dtype), (x.shape[0], 1, 1))x = ops.concat((cls_tokens, x), axis=1)x += self.pos_embeddingx = self.pos_dropout(x)x = self.transformer(x)x = self.norm(x)x = x[:, 0]if self.training:x = self.dropout(x)x = self.dense(x)return x

总结

这一节对Transformer进行介绍,包括Attention机制、并行化的Attention以及Encoder模块。由于传统Transformer主要作用于一维的词向量,因此二维图像需要被转换为类似的一维词向量堆叠,在ViT中通过将Patch Embedding解决这一问题,并用来代替传统Transformer中的Word Embedding作为网络的输入。

打卡

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com