欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 美食 > sklearn基础教程

sklearn基础教程

2025/2/21 3:31:14 来源:https://blog.csdn.net/asdfghjjk11111/article/details/140911873  浏览:    关键词:sklearn基础教程

scikit-learn(通常简称为 sklearn)是一个非常流行的 Python 库,用于数据挖掘和数据分析。它提供了许多高效的工具,用于机器学习和统计建模,包括分类、回归、聚类和降维等。

以下是一个简化的 sklearn 基础教程概览:

1. 安装 scikit-learn

首先,你需要安装 scikit-learn。如果你还没有安装,可以通过 pip 或 conda 进行安装:

pip install scikit-learn

或者如果你使用 Anaconda 发行版的话:

conda install scikit-learn

2. 基本概念

  • 数据集:通常包含特征(features)和标签(labels)。
  • 模型:用于学习数据中的模式。
  • 训练:使用数据集的一部分来调整模型参数。
  • 测试/验证:使用未见过的数据来评估模型性能。
  • 预处理:对数据进行清洗、转换和规范化。

3. 常用功能

  • 数据预处理:包括标准化、归一化、填充缺失值等。
  • 特征选择与提取:支持 PCA、LDA 等降维技术,以及特征选择方法。
  • 模型选择与评估:提供交叉验证、网格搜索等模型选择和评估工具。
  • 监督学习:包括分类和回归算法,如 SVM、决策树、随机森林、逻辑回归等。
  • 无监督学习:包括聚类、降维算法,如 K-means、DBSCAN、t-SNE 等。
  • 集成学习:支持 Bagging、Boosting 等方法,如 AdaBoost、Gradient Boosting 等。

4. 示例:分类任务

这里有一个简单的分类任务示例,使用著名的鸢尾花数据集 (Iris dataset):

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 数据预处理
scaler = StandardScaler()
X_train_std = scaler.fit_transform(X_train)
X_test_std = scaler.transform(X_test)# 创建模型
model = LogisticRegression()# 训练模型
model.fit(X_train_std, y_train)# 预测
y_pred = model.predict(X_test_std)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

5. 示例:回归任务

下面是一个简单的线性回归任务示例:

from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error# 生成模拟数据
X, y = make_regression(n_samples=100, n_features=1, noise=0.1)# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建模型
regressor = LinearRegression()# 训练模型
regressor.fit(X_train, y_train)# 预测
y_pred = regressor.predict(X_test)# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')

以上就是 scikit-learn 的一个简要介绍。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词