欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 健康 > 养生 > 读懂NCHW和NHWC

读懂NCHW和NHWC

2025/4/20 12:59:20 来源:https://blog.csdn.net/weixin_64043217/article/details/142752955  浏览:    关键词:读懂NCHW和NHWC

 vscode ssh连接防火墙关闭

sudo ufw allow ssh打开即可

TensorRT推理参考:

一篇就够:高性能推理引擎理论与实践 (TensorRT)-阿里云开发者社区

下面很好的描述了各种不同的格式。

 参考文档

Tensor 内存布局 — MegEngine 1.13.2 文档

对于”NCHW” 而言,其同一个通道的像素值连续排布,更适合那些需要对 每个通道单独做运算 的操作,比如”MaxPooling”。对于”NHWC”而言,其不同通道中的同一位置元素顺序存储,因此更适合那些需要对 不同通道的同一像素做某种运算 的操作,比如“Conv”。

GPU上训练时输入数据格式采用NCHW格式,在推理结果输出时,返回的数据为NHWC格式。 

N代表数量, C代表channel,H代表高度,W代表宽度。

NCHW其实代表的是[W H C N],第一个元素是000,第二个元素是沿着w方向的,即001,这样下去002 003,再接着呢就是沿着H方向,即004 005 006 007...这样到019后,沿C方向,轮到了020,之后021 022 ...一直到319,然后再沿N方向。

NHWC的话以此类推,代表的是[C W H N],第一个元素是000,第二个沿C方向,即020,040, 060..一直到300,之后沿W方向,001 021 041 061...301..到了303后,沿H方向,即004 024 .。。304.。最后到了319,变成N方向,320,340....

图中所示a就是指四个维度。

那么在不同的硬件加速的情况下,选用的类型不同,在intel GPU加速的情况下,因为GPU对于图像的处理比较多,希望在访问同一个channel的像素是连续的,一般存储选用NCHW,这样在做CNN的时候,在访问内存的时候就是连续的了,比较方便。

 

NHWC 的访存局部性更好(每三个输入像素即可得到一个输出像素),NCHW 则必须等所有通道输入准备好才能得到最终输出结果,需要占用较大的临时空间。 

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词