欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 艺术 > 第100+29步 ChatGPT学习:概率校准 Spline Calibration

第100+29步 ChatGPT学习:概率校准 Spline Calibration

2024/10/25 11:44:15 来源:https://blog.csdn.net/qq_30452897/article/details/143205884  浏览:    关键词:第100+29步 ChatGPT学习:概率校准 Spline Calibration

基于Python 3.9版本演示

一、写在前面

最近看了一篇在Lancet子刊《eClinicalMedicine》上发表的机器学习分类的文章:《Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population-based machine-learning study》。

学到一种叫做“概率校准”的骚操作,顺手利用GPT系统学习学习。

文章中用的技术是:保序回归(Isotonic regression)。

为了体现举一反三,顺便问了GPT还有哪些方法也可以实现概率校准。它给我列举了很多,那么就一个一个学习吧。

这一期,介绍一个叫做 Spline Calibration 的方法。

二、Spline Calibration

Spline Calibration是一种用于校准机器学习模型输出概率的技术,其目的是将模型预测的概率值调整得更加准确,通常用于分类问题。Spline Calibration利用样条曲线(splines)来实现概率校准。样条曲线是一种分段函数,通过在不同区间内使用多项式函数进行拟合来表示数据。在概率校准中,样条曲线能够捕捉到模型预测概率和实际概率之间的关系,从而对模型输出的概率进行调整。

(1)主要步骤

1)数据分段:将模型输出的概率值分段处理,例如将0到1的概率区间分成若干小区间。

2)局部拟合:在每个小区间内,使用多项式函数(通常是二次或三次多项式)对实际概率与预测概率之间的关系进行拟合。

3)连续连接:通过样条曲线的节点(knots)将这些局部多项式函数连续地连接起来,形成一条平滑的校准曲线。

4)校准映射:利用这条校准曲线,将模型输出的概率映射到校准后的概率。

三、Spline Calibration代码实现

下面,我编一个1比3的不太平衡的数据进行测试,对照组使用不进行校准的SVM模型,实验组就是加入校准的SVM模型,看看性能能够提高多少?

(1)不进行校准的SVM模型(默认参数)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, roc_auc_score, roc_curve# 加载数据
dataset = pd.read_csv('8PSMjianmo.csv')
X = dataset.iloc[:, 1:20].values
Y = dataset.iloc[:, 0].values# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=666)# 标准化数据
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)# 使用SVM分类器
classifier = SVC(kernel='linear', probability=True)
classifier.fit(X_train, y_train)# 预测结果
y_pred = classifier.predict(X_test)
y_testprba = classifier.decision_function(X_test)y_trainpred = classifier.predict(X_train)
y_trainprba = classifier.decision_function(X_train)# 混淆矩阵
cm_test = confusion_matrix(y_test, y_pred)
cm_train = confusion_matrix(y_train, y_trainpred)
print(cm_train)
print(cm_test)# 绘制测试集混淆矩阵
classes = list(set(y_test))
classes.sort()
plt.imshow(cm_test, cmap=plt.cm.Blues)
indices = range(len(cm_test))
plt.xticks(indices, classes)
plt.yticks(indices, classes)
plt.colorbar()
plt.xlabel('Predicted')
plt.ylabel('Actual')
for first_index in range(len(cm_test)):for second_index in range(len(cm_test[first_index])):plt.text(first_index, second_index, cm_test[first_index][second_index])plt.show()# 绘制训练集混淆矩阵
classes = list(set(y_train))
classes.sort()
plt.imshow(cm_train, cmap=plt.cm.Blues)
indices = range(len(cm_train))
plt.xticks(indices, classes)
plt.yticks(indices, classes)
plt.colorbar()
plt.xlabel('Predicted')
plt.ylabel('Actual')
for first_index in range(len(cm_train)):for second_index in range(len(cm_train[first_index])):plt.text(first_index, second_index, cm_train[first_index][second_index])plt.show()# 计算并打印性能参数
def calculate_metrics(cm, y_true, y_pred_prob):a = cm[0, 0]b = cm[0, 1]c = cm[1, 0]d = cm[1, 1]acc = (a + d) / (a + b + c + d)error_rate = 1 - accsen = d / (d + c)sep = a / (a + b)precision = d / (b + d)F1 = (2 * precision * sen) / (precision + sen)MCC = (d * a - b * c) / (np.sqrt((d + b) * (d + c) * (a + b) * (a + c)))auc_score = roc_auc_score(y_true, y_pred_prob)metrics = {"Accuracy": acc,"Error Rate": error_rate,"Sensitivity": sen,"Specificity": sep,"Precision": precision,"F1 Score": F1,"MCC": MCC,"AUC": auc_score}return metricsmetrics_test = calculate_metrics(cm_test, y_test, y_testprba)
metrics_train = calculate_metrics(cm_train, y_train, y_trainprba)print("Performance Metrics (Test):")
for key, value in metrics_test.items():print(f"{key}: {value:.4f}")print("\nPerformance Metrics (Train):")
for key, value in metrics_train.items():
print(f"{key}: {value:.4f}")

结果输出:

记住这些个数字。

这个参数的SVM还没有LR好。

(2)进行校准的SVM模型(默认参数)

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, roc_auc_score, brier_score_loss, precision_score, f1_score, matthews_corrcoef
from sklearn.calibration import calibration_curve
import statsmodels.api as sm
from patsy import dmatrix# 加载数据
dataset = pd.read_csv('8PSMjianmo.csv')
X = dataset.iloc[:, 1:20].values
Y = dataset.iloc[:, 0].values# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=666)# 标准化数据
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)# 使用SVM分类器
classifier = SVC(kernel='rbf', C=0.1, probability=True)
classifier.fit(X_train, y_train)# 获取未校准的概率预测
y_train_probs = classifier.predict_proba(X_train)[:, 1]
y_test_probs = classifier.predict_proba(X_test)[:, 1]# 样条校准类
class SplineCalibration:def __init__(self):self.model = Nonedef fit(self, probs, true_labels):# 创建样条特征transformed_x = dmatrix("bs(probs, df=6, include_intercept=False)",{"probs": probs}, return_type='dataframe')# 使用广义线性模型进行校准self.model = sm.GLM(true_labels, transformed_x, family=sm.families.Binomial()).fit()def predict(self, probs):# 创建样条特征transformed_x = dmatrix("bs(probs, df=6, include_intercept=False)",{"probs": probs}, return_type='dataframe')# 使用校准模型预测校准后的概率calibrated_probs = self.model.predict(transformed_x)return calibrated_probs# 训练样条校准模型
spline_cal = SplineCalibration()
spline_cal.fit(y_train_probs, y_train)# 进行校准
calibrated_train_probs = spline_cal.predict(y_train_probs)
calibrated_test_probs = spline_cal.predict(y_test_probs)# 预测结果
y_train_pred = (calibrated_train_probs >= 0.5).astype(int)
y_test_pred = (calibrated_test_probs >= 0.5).astype(int)# 混淆矩阵
cm_test = confusion_matrix(y_test, y_test_pred)
cm_train = confusion_matrix(y_train, y_train_pred)
print(cm_train)
print(cm_test)# 绘制混淆矩阵函数
def plot_confusion_matrix(cm, classes, title='Confusion Matrix'):plt.imshow(cm, cmap=plt.cm.Blues)indices = range(len(cm))plt.xticks(indices, classes)plt.yticks(indices, classes)plt.colorbar()plt.xlabel('Predicted')plt.ylabel('Actual')for first_index in range(len(cm)):for second_index in range(len(cm[first_index])):plt.text(second_index, first_index, cm[first_index][second_index])plt.title(title)plt.show()# 绘制测试集混淆矩阵
plot_confusion_matrix(cm_test, list(set(y_test)), 'Confusion Matrix (Test)')# 绘制训练集混淆矩阵
plot_confusion_matrix(cm_train, list(set(y_train)), 'Confusion Matrix (Train)')# 计算并打印性能参数
def calculate_metrics(cm, y_true, y_pred, y_pred_prob):a = cm[0, 0]b = cm[0, 1]c = cm[1, 0]d = cm[1, 1]acc = (a + d) / (a + b + c + d)error_rate = 1 - accsen = d / (d + c) if (d + c) > 0 else 0sep = a / (a + b) if (a + b) > 0 else 0precision = precision_score(y_true, y_pred, zero_division=0)F1 = f1_score(y_true, y_pred, zero_division=0)MCC = matthews_corrcoef(y_true, y_pred)auc_score = roc_auc_score(y_true, y_pred_prob)brier_score = brier_score_loss(y_true, y_pred_prob)metrics = {"Accuracy": acc,"Error Rate": error_rate,"Sensitivity": sen,"Specificity": sep,"Precision": precision,"F1 Score": F1,"MCC": MCC,"AUC": auc_score,"Brier Score": brier_score}return metricsmetrics_test = calculate_metrics(cm_test, y_test, y_test_pred, calibrated_test_probs)
metrics_train = calculate_metrics(cm_train, y_train, y_train_pred, calibrated_train_probs)print("Performance Metrics (Test):")
for key, value in metrics_test.items():print(f"{key}: {value:.4f}")print("\nPerformance Metrics (Train):")
for key, value in metrics_train.items():print(f"{key}: {value:.4f}")

看看结果:

大同小异吧。

四、换个策略

参考那篇文章的策略:采用五折交叉验证来建立和评估模型,其中四折用于训练,一折用于评估,在训练集中,其中三折用于建立SVM模型,另一折采用Spline Calibration概率校正,在训练集内部采用交叉验证对超参数进行调参。

代码:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix, roc_auc_score, brier_score_loss, precision_score, f1_score, matthews_corrcoef
from sklearn.calibration import calibration_curve
import statsmodels.api as sm
from patsy import dmatrix# 加载数据
dataset = pd.read_csv('8PSMjianmo.csv')
X = dataset.iloc[:, 1:20].values
Y = dataset.iloc[:, 0].values# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.30, random_state=666)# 标准化数据
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)# 定义五折交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=666)
calibrated_probs = []
true_labels = []# 样条校准类
class SplineCalibration:def __init__(self):self.model = Nonedef fit(self, probs, true_labels):# 创建样条特征transformed_x = dmatrix("bs(probs, df=6, include_intercept=False)",{"probs": probs}, return_type='dataframe')# 使用广义线性模型进行校准self.model = sm.GLM(true_labels, transformed_x, family=sm.families.Binomial()).fit()def predict(self, probs):# 创建样条特征transformed_x = dmatrix("bs(probs, df=6, include_intercept=False)",{"probs": probs}, return_type='dataframe')# 使用校准模型预测校准后的概率calibrated_probs = self.model.predict(transformed_x)return calibrated_probsbest_params = None  # 用于存储最优参数for train_index, val_index in kf.split(X_train):X_train_fold, X_val_fold = X_train[train_index], X_train[val_index]y_train_fold, y_val_fold = y_train[train_index], y_train[val_index]# 内部三折交叉验证用于超参数调优inner_kf = KFold(n_splits=3, shuffle=True, random_state=666)param_grid = {'C': [0.01, 0.1, 1, 10, 100], 'kernel': ['rbf']}svm = SVC(probability=True)clf = GridSearchCV(svm, param_grid, cv=inner_kf, scoring='roc_auc')clf.fit(X_train_fold, y_train_fold)best_params = clf.best_params_# 使用最佳参数训练SVMclassifier = SVC(kernel=best_params['kernel'], C=best_params['C'], probability=True)classifier.fit(X_train_fold, y_train_fold)# 获取未校准的概率预测y_val_fold_probs = classifier.predict_proba(X_val_fold)[:, 1]# 样条校准spline_cal = SplineCalibration()spline_cal.fit(y_val_fold_probs, y_val_fold)calibrated_val_fold_probs = spline_cal.predict(y_val_fold_probs)calibrated_probs.extend(calibrated_val_fold_probs)true_labels.extend(y_val_fold)# 用于测试集的SVM模型训练和校准
classifier_final = SVC(kernel=best_params['kernel'], C=best_params['C'], probability=True)
classifier_final.fit(X_train, y_train)
y_test_probs = classifier_final.predict_proba(X_test)[:, 1]# 样条校准
spline_cal_final = SplineCalibration()
spline_cal_final.fit(y_test_probs, y_test)
calibrated_test_probs = spline_cal_final.predict(y_test_probs)# 预测结果
y_train_pred = (np.array(calibrated_probs) >= 0.5).astype(int)
y_test_pred = (calibrated_test_probs >= 0.5).astype(int)# 混淆矩阵
cm_test = confusion_matrix(y_test, y_test_pred)
cm_train = confusion_matrix(true_labels, y_train_pred)
print("Training Confusion Matrix:\n", cm_train)
print("Testing Confusion Matrix:\n", cm_test)# 绘制混淆矩阵函数
def plot_confusion_matrix(cm, classes, title='Confusion Matrix'):plt.imshow(cm, cmap=plt.cm.Blues)indices = range(len(cm))plt.xticks(indices, classes)plt.yticks(indices, classes)plt.colorbar()plt.xlabel('Predicted')plt.ylabel('Actual')for first_index in range(len(cm)):for second_index in range(len(cm[first_index])):plt.text(second_index, first_index, cm[first_index][second_index])plt.title(title)plt.show()# 绘制测试集混淆矩阵
plot_confusion_matrix(cm_test, list(set(y_test)), 'Confusion Matrix (Test)')# 绘制训练集混淆矩阵
plot_confusion_matrix(cm_train, list(set(true_labels)), 'Confusion Matrix (Train)')# 计算并打印性能参数
def calculate_metrics(cm, y_true, y_pred, y_pred_prob):a = cm[0, 0]b = cm[0, 1]c = cm[1, 0]d = cm[1, 1]acc = (a + d) / (a + b + c + d)error_rate = 1 - accsen = d / (d + c) if (d + c) > 0 else 0sep = a / (a + b) if (a + b) > 0 else 0precision = precision_score(y_true, y_pred, zero_division=0)F1 = f1_score(y_true, y_pred, zero_division=0)MCC = matthews_corrcoef(y_true, y_pred)auc_score = roc_auc_score(y_true, y_pred_prob)brier_score = brier_score_loss(y_true, y_pred_prob)metrics = {"Accuracy": acc,"Error Rate": error_rate,"Sensitivity": sen,"Specificity": sep,"Precision": precision,"F1 Score": F1,"MCC": MCC,"AUC": auc_score,"Brier Score": brier_score}return metricsmetrics_test = calculate_metrics(cm_test, y_test, y_test_pred, calibrated_test_probs)
metrics_train = calculate_metrics(cm_train, true_labels, y_train_pred, np.array(calibrated_probs))print("Performance Metrics (Test):")
for key, value in metrics_test.items():print(f"{key}: {value:.4f}")print("\nPerformance Metrics (Train):")
for key, value in metrics_train.items():print(f"{key}: {value:.4f}")# 绘制校准曲线
def plot_calibration_curve(y_true, probs, title='Calibration Curve'):fraction_of_positives, mean_predicted_value = calibration_curve(y_true, probs, n_bins=10)plt.plot(mean_predicted_value, fraction_of_positives, "s-", label="Spline Calibration")plt.plot([0, 1], [0, 1], "k--")plt.xlabel('Mean predicted value')plt.ylabel('Fraction of positives')plt.title(title)plt.legend()plt.show()# 绘制校准曲线
plot_calibration_curve(y_test, calibrated_test_probs, title='Calibration Curve (Test)')
plot_calibration_curve(true_labels, np.array(calibrated_probs), title='Calibration Curve (Train)')

输出:

效果甚至还变差了呢。

五、最后

各位可以去试一试在其他数据或者在其他机器学习分类模型中使用的效果。

数据不分享啦。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com