欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 美景 > 数据结构之 二叉树详解一 介绍篇

数据结构之 二叉树详解一 介绍篇

2024/11/30 5:34:40 来源:https://blog.csdn.net/2301_76838975/article/details/143267413  浏览:    关键词:数据结构之 二叉树详解一 介绍篇

1.树的相关概念

节点的度 :一个节点含有的子树的个数称为该节点的度; 如上图: A 的为 6
叶节点或终端节点 :度为 0 的节点称为叶节点; 如上图: B C H I... 等节点为叶节点
非终端节点或分支节点 :度不为 0 的节点; 如上图: D E F G... 等节点为分支节点
双亲节点或父节点 :若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图: A B 的父节点
孩子节点或子节点 :一个节点含有的子树的根节点称为该节点的子节点; 如上图: B A 的孩子节点
兄弟节点 :具有相同父节点的节点互称为兄弟节点; 如上图: B C 是兄弟节点
树的度 :一棵树中,最大的节点的度称为树的度; 如上图:树的度为 6
节点的层次 :从根开始定义起,根为第 1 层,根的子节点为第 2 层,以此类推;
树的高度或深度 :树中节点的最大层次; 如上图:树的高度为 4
堂兄弟节点 :双亲在同一层的节点互为堂兄弟;如上图: H I 互为兄弟节点
节点的祖先 :从根到该节点所经分支上的所有节点;如上图: A 是所有节点的祖先
子孙 :以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是 A 的子孙
森林 :由 m m>0 )棵互不相交的树的集合称为森林

2.树的表示

这里就简单的了解其中最常用的 孩子兄弟表示法
typedef int DataType;
struct Node
{struct Node* _firstChild1; // 第一个孩子结点struct Node* _pNextBrother; // 指向其下一个兄弟结点DataType _data; // 结点中的数据域
};

3.二叉树概念及结构

一棵二叉树是结点的一个有限集合,该集合 :
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
对于任意的二叉树都是由以下几种情况复合而成的:

特殊的二叉树:

1. 满二叉树 :一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K ,且结点总数是2^k-1,则它就是满二叉树。
2. 完全二叉树 :完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 1 n 的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储
顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树 ,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储
二叉树顺 序存储在 物理上是一个数组,在逻辑上是一颗二叉树。

.完全二叉树适合用数组存储,当用数组存储时

对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0 开始编号,则对于序号为i 的结点有:
1. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
2. 2i+1<n ,左孩子序号: 2i+1 2i+1>=n 否则无左孩子
3. 2i+2<n ,右孩子序号: 2i+2 2i+2>=n 否则无右孩子

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com