欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 文化 > 平方数列与立方数列求和的数学推导

平方数列与立方数列求和的数学推导

2025/2/19 8:12:06 来源:https://blog.csdn.net/nyxdsb/article/details/145622429  浏览:    关键词:平方数列与立方数列求和的数学推导

先上结论:

平方数列求和公式为: S 2 ( n ) = n ( n + 1 ) ( 2 n + 1 ) 6 S_2(n) = \frac{n(n+1)(2n+1)}{6} S2(n)=6n(n+1)(2n+1)

立方数列求和公式为: S 3 ( n ) = ( n ( n + 1 ) 2 ) 2 S_3(n) = \left( \frac{n(n+1)}{2} \right)^2 S3(n)=(2n(n+1))2


1 平方数列求和

1 2 , 2 2 , 3 2 , … , n 2 1^2, 2^2, 3^2, \dots, n^2 12,22,32,,n2 的数列。计算前 n n n 项和:
S 2 ( n ) = 1 2 + 2 2 + 3 2 + ⋯ + n 2 S_2(n) = 1^2 + 2^2 + 3^2 + \dots + n^2 S2(n)=12+22+32++n2

1.1 多项式拟合

假设 S 2 ( n ) S_2(n) S2(n) 是一个三次多项式(因为平方数列的增长速度为三次,为什么?看这篇为什么平方数列求和是三次多项式?):
S 2 ( n ) = A n 3 + B n 2 + C n + D S_2(n) = An^3 + Bn^2 + Cn + D S2(n)=An3+Bn2+Cn+D

  • n = 1 n=1 n=1 时, S 2 ( 1 ) = 1 2 = 1 S_2(1) = 1^2 = 1 S2(1)=12=1
    A + B + C + D = 1 A + B + C + D = 1 A+B+C+D=1

  • n = 2 n=2 n=2 时, S 2 ( 2 ) = 1 2 + 2 2 = 5 S_2(2) = 1^2 + 2^2 = 5 S2(2)=12+22=5
    8 A + 4 B + 2 C + D = 5 8A + 4B + 2C + D = 5 8A+4B+2C+D=5

  • n = 3 n=3 n=3 时, S 2 ( 3 ) = 1 2 + 2 2 + 3 2 = 14 S_2(3) = 1^2 + 2^2 + 3^2 = 14 S2(3)=12+22+32=14
    27 A + 9 B + 3 C + D = 14 27A + 9B + 3C + D = 14 27A+9B+3C+D=14

  • n = 4 n=4 n=4 时, S 2 ( 4 ) = 1 2 + 2 2 + 3 2 + 4 2 = 30 S_2(4) = 1^2 + 2^2 + 3^2 + 4^2 = 30 S2(4)=12+22+32+42=30
    64 A + 16 B + 4 C + D = 30 64A + 16B + 4C + D = 30 64A+16B+4C+D=30

通过解联立方程上面四个方程,得到:
A = 1 3 , B = 1 2 , C = 1 6 , D = 0 A = \frac{1}{3}, \quad B = \frac{1}{2}, \quad C = \frac{1}{6}, \quad D = 0 A=31,B=21,C=61,D=0

∴ S 2 ( n ) = 1 3 n 3 + 1 2 n 2 + 1 6 n \therefore S_2(n) = \frac{1}{3}n^3 + \frac{1}{2}n^2 + \frac{1}{6}n S2(n)=31n3+21n2+61n

化简一下:
S 2 ( n ) = n ( n + 1 ) ( 2 n + 1 ) 6 S_2(n) = \frac{n(n+1)(2n+1)}{6} S2(n)=6n(n+1)(2n+1)


1.2数学归纳

S 2 ( n ) = n ( n + 1 ) ( 2 n + 1 ) 6 S_2(n) = \frac{n(n+1)(2n+1)}{6} S2(n)=6n(n+1)(2n+1)

第一步:当 n = 1 n=1 n=1 时,
S 2 ( 1 ) = 1 2 = 1 , 1 ( 1 + 1 ) ( 2 ⋅ 1 + 1 ) 6 = 1 ⋅ 2 ⋅ 3 6 = 1 S_2(1) = 1^2 = 1, \quad \frac{1(1+1)(2\cdot1+1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = 1 S2(1)=12=1,61(1+1)(21+1)=6123=1
成立。

归纳假设:假设公式对 n = k n=k n=k 成立,即:
S 2 ( k ) = k ( k + 1 ) ( 2 k + 1 ) 6 S_2(k) = \frac{k(k+1)(2k+1)}{6} S2(k)=6k(k+1)(2k+1)

归纳步骤:验证公式对 n = k + 1 n=k+1 n=k+1 是否成立:
S 2 ( k + 1 ) = S 2 ( k ) + ( k + 1 ) 2 S_2(k+1) = S_2(k) + (k+1)^2 S2(k+1)=S2(k)+(k+1)2

代入归纳假设:
S 2 ( k + 1 ) = k ( k + 1 ) ( 2 k + 1 ) 6 + ( k + 1 ) 2 S_2(k+1) = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 S2(k+1)=6k(k+1)(2k+1)+(k+1)2

提取公因式 ( k + 1 ) (k+1) (k+1)
S 2 ( k + 1 ) = ( k + 1 ) [ k ( 2 k + 1 ) + 6 ( k + 1 ) ] 6 S_2(k+1) = \frac{(k+1)\left[k(2k+1) + 6(k+1)\right]}{6} S2(k+1)=6(k+1)[k(2k+1)+6(k+1)]

化简:
k ( 2 k + 1 ) + 6 ( k + 1 ) = 2 k 2 + k + 6 k + 6 = 2 k 2 + 7 k + 6 k(2k+1) + 6(k+1) = 2k^2 + k + 6k + 6 = 2k^2 + 7k + 6 k(2k+1)+6(k+1)=2k2+k+6k+6=2k2+7k+6

分解因式:
2 k 2 + 7 k + 6 = ( k + 2 ) ( 2 k + 3 ) 2k^2 + 7k + 6 = (k+2)(2k+3) 2k2+7k+6=(k+2)(2k+3)

因此:
S 2 ( k + 1 ) = ( k + 1 ) ( k + 2 ) ( 2 k + 3 ) 6 S_2(k+1) = \frac{(k+1)(k+2)(2k+3)}{6} S2(k+1)=6(k+1)(k+2)(2k+3)

公式对 n = k + 1 n=k+1 n=k+1 也成立,所以归纳合理。


2 立方数列求和

1 3 , 2 3 , 3 3 , … , n 3 1^3, 2^3, 3^3, \dots, n^3 13,23,33,,n3 的数列。计算前 n n n 项和:
S 3 ( n ) = 1 3 + 2 3 + 3 3 + ⋯ + n 3 S_3(n) = 1^3 + 2^3 + 3^3 + \dots + n^3 S3(n)=13+23+33++n3

2.1 等差数列性质

有以下恒等式:
k 3 = ( k ( k + 1 ) 2 ) 2 − ( ( k − 1 ) k 2 ) 2 k^3 = \left(\frac{k(k+1)}{2}\right)^2 - \left(\frac{(k-1)k}{2}\right)^2 k3=(2k(k+1))2(2(k1)k)2

将上式累加从 k = 1 k=1 k=1 k = n k=n k=n
∑ k = 1 n k 3 = ( n ( n + 1 ) 2 ) 2 − ( 0 ⋅ 1 2 ) 2 \sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2 - \left(\frac{0 \cdot 1}{2}\right)^2 k=1nk3=(2n(n+1))2(201)2

右边第二项为零,因此:
S 3 ( n ) = ( n ( n + 1 ) 2 ) 2 S_3(n) = \left(\frac{n(n+1)}{2}\right)^2 S3(n)=(2n(n+1))2


2.2 数学归纳

S 3 ( n ) = ( n ( n + 1 ) 2 ) 2 S_3(n) = \left(\frac{n(n+1)}{2}\right)^2 S3(n)=(2n(n+1))2

第一步:当 n = 1 n=1 n=1 时,
S 3 ( 1 ) = 1 3 = 1 , ( 1 ( 1 + 1 ) 2 ) 2 = ( 2 2 ) 2 = 1 S_3(1) = 1^3 = 1, \quad \left(\frac{1(1+1)}{2}\right)^2 = \left(\frac{2}{2}\right)^2 = 1 S3(1)=13=1,(21(1+1))2=(22)2=1
成立。

归纳假设:假设公式对 n = k n=k n=k 成立,即:
S 3 ( k ) = ( k ( k + 1 ) 2 ) 2 S_3(k) = \left(\frac{k(k+1)}{2}\right)^2 S3(k)=(2k(k+1))2

归纳步骤:验证公式对 n = k + 1 n=k+1 n=k+1 是否成立:
S 3 ( k + 1 ) = S 3 ( k ) + ( k + 1 ) 3 S_3(k+1) = S_3(k) + (k+1)^3 S3(k+1)=S3(k)+(k+1)3

代入归纳假设:
S 3 ( k + 1 ) = ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 S_3(k+1) = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 S3(k+1)=(2k(k+1))2+(k+1)3

提取公因式 ( k + 1 ) 2 (k+1)^2 (k+1)2
S 3 ( k + 1 ) = ( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 2 ( k + 1 ) S_3(k+1) = \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^2(k+1) S3(k+1)=(2k(k+1))2+(k+1)2(k+1)

化简:
( k ( k + 1 ) 2 ) 2 + ( k + 1 ) 3 = ( k ( k + 1 ) 2 ) 2 + ( 2 ( k + 1 ) 2 ) 3 \left(\frac{k(k+1)}{2}\right)^2 + (k+1)^3 = \left(\frac{k(k+1)}{2}\right)^2 + \left(\frac{2(k+1)}{2}\right)^3 (2k(k+1))2+(k+1)3=(2k(k+1))2+(22(k+1))3

合并为平方形式:
S 3 ( k + 1 ) = ( ( k + 1 ) ( k + 2 ) 2 ) 2 S_3(k+1) = \left(\frac{(k+1)(k+2)}{2}\right)^2 S3(k+1)=(2(k+1)(k+2))2

n = k + 1 n=k+1 n=k+1 的成立,归纳合理。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词