欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 手游 > 【工具】BioPred一个用于精准医疗中生物标志物分析的 R 软件包

【工具】BioPred一个用于精准医疗中生物标志物分析的 R 软件包

2025/4/2 7:35:51 来源:https://blog.csdn.net/H20230717/article/details/146762901  浏览:    关键词:【工具】BioPred一个用于精准医疗中生物标志物分析的 R 软件包

在这里插入图片描述

介绍

R 语言包 BioPred 提供了一系列用于精准医疗中的亚组分析和生物标志物分析的工具。它借助极端梯度提升(XGBoost)算法,并结合倾向得分加权和 A 学习方法,帮助优化个体化治疗规则,从而简化亚组识别过程。BioPred 还能够识别预测性生物标志物,并获取其重要性排名。此外,该包还提供了针对生物标志物分析定制的图形图表。这一工具使临床研究人员能够加深对药物开发中生物标志物和患者群体的理解。

The R package BioPred offers a suite of tools for subgroup and biomarker analysis in precision medicine. Leveraging Extreme Gradient Boosting (XGBoost) along with propensity score weighting and A-learning methods, BioPred facilitates the optimization of individualized treatment rules to streamline subgroup identification. BioPred also enables the identification of predictive biomarkers and obtaining their importance rankings. Moreover, the package provides graphical plots tailored for biomarker analysis. This tool enables clinical researchers seeking to enhance their understanding of biomarkers and patient population in drug development.

代码

https://github.com/deeplearner0731/BioPred

在这里插入图片描述

文章目录

    • 介绍
    • 代码
    • 案例
    • 参考

案例

安装

install.packages("BioPred")devtools::install_github("deeplearner0731/BioPred")

运行代码: https://cran.r-project.org/web/packages/BioPred/vignettes/Tutorial.html

在这里插入图片描述

model = XGBoostSub_bin(X, y, trt, pi,Loss_type = “A_learning”, params = list(learning_rate = 0.01, max_depth = 1, lambda = 5, tree_method = ‘hist’), nrounds = 300, disable_default_eval_metric = 0, verbose = FALSE)get_subgroup_results(model, X)eval_metric_bin(model, X, y, pi, trt, Loss_type = “A_learning”)predictive_biomarker_imp(model)fixcut_bin(yvar=“y”, xvar=“x1”, dir=>, cutoffs=c(0.1,0.3,0.5), data=tutorial_data, method=“Fisher”, yvar.display=“y”, xvar.display=“Biomarker x1”, vert.x=F)res=cut_perf(yvar=“y”, censorvar=NULL, xvar=“x1”, cutoff=c(0.5), dir=>, xvars.adj=NULL, data=tutorial_data, type=“c”, yvar.display=“y”, xvar.display=“Biomarker x1”)res = subgrp_perf_pred(yvar=“y.time”, censorvar=“y.event”, grpvar=“biogroup”, grpname=c(“biomarker_positive”,‘biomarker_negative’),trtvar=“treatment_categorical”, trtname=c(“Placebo”, “Treatment”), xvars.adj=NULL,data=tutorial_data, type=“s”)gam_ctr_plot(yvar=“y.time”, censorvar=“y.event”, xvar= “x1”, xvars.adj=NULL,sxvars.adj=NULL,trtvar=“trt”,type=“s”,data=tutorial_data, k=5, title=“Group Contrast”, ybreaks=NULL, xbreaks=NULL, rugcol.var=NULL,link.scale=T, prt.sum=T, prt.chk=F, outlier.rm=F)roc_bin_plot(yvar=“y”, xvars=“x1”, dirs=“auto”, data=tutorial_data, yvar.display=“y.bin”, xvars.display=“Biomarker x1”)

参考

  • BioPred: an R package for biomarkers analysis in precision medicine
  • https://github.com/deeplearner0731/BioPred

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词