欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 文旅 > 游戏 > 文献汇总|AI生成图像模型溯源相关工作汇总(2019年至今)

文献汇总|AI生成图像模型溯源相关工作汇总(2019年至今)

2025/4/23 12:18:57 来源:https://blog.csdn.net/qq_36332660/article/details/147424855  浏览:    关键词:文献汇总|AI生成图像模型溯源相关工作汇总(2019年至今)

前言:本篇博客总结 2019 年至今 通用AIGI(AI-Generated Image)模型溯源相关研究工作。


AIGI溯源相关博客如下:

  • 文献研读|AIGC溯源场景及研究进展

目录

  • 2019
  • 2020
  • 2021
  • 2022
  • 2023
  • 2024
  • 2025

2019

  • Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints. ICCV 2019
    Ning Yu, Larry Davis, Mario Fritz. University of Maryland, USA

  • Do GANs Leave Artificial Fingerprints? MIPR,2019.
    Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, Giovanni Poggi. University Federico II of Naples, Italy
    核心思想:基于GAN噪声残差相似度的检测。受相机固有缺陷导致的光响应非均匀性(PRNU)启发,提取GAN生成图像中的指纹,借此完成溯源

  • Incremental learning for the detection and classification of GAN-generated image. WIFS, 2019
    Francesco Marra; Cristiano Saltori; Giulia Boato; Luisa Verdoliva. University Federico II of Naples, Italy

  • Source Generator Attribution via Inversion. CVPR Workshops 2019
    Michael Albright and Scott McCloskey. Honeywell ACST
    核心思想:给定一个probe image,和多个GANs,通过损失优化的方式,找到最佳结果对应的潜向量,选择重建效果最接近probe image的GAN

  • Scalable fine-grained generated image classification based on deep metric learning. arXiv, 2019
    Xuan, Xinsheng and Peng, Bo and Wang, Wei and Dong, Jing. Chinese Academy of Sciences, China

2020

  • Attributing and Detecting Fake Images Generated by Known GANs. SPW, 2020
    Matthew Joslin and Shuang Hao. University of Texas at Dallas, USA
    核心思想:GAN图像FFT特征的平均作为fingerprint,然后和 test image FFT 计算相似度

2021

  • Towards discovery and attribution of open-world gan generated images. ICCV 2021
    Sharath Girish, Saksham Suri, Saketh Rambhatla, Abhinav Shrivastava. University of Maryland, USA

  • Does a GAN leave distinct model-specific fingerprints?. BMVC 2021
    Yuzhen Ding, Nupur Thakur and baoxin Li. Arizona State University, USA

  • Deepfake attribution: On the source identification of artificially generated images. Wires, 2021
    Brandon Khoo, Raphaël C.-W. Phan, Chern-Hong Lim. University, Malaysia, Malaysia

  • On attribution of deepfakes. arXiv 20210303
    Baiwu Zhang, Jin Peng Zhou, Ilia Shumailov, Nicolas Papernot. University of Toronto, Canada
    核心思想:提出Strict Attribution 和 Relaxed attribution 场景,想法和Michael Albright的那篇类似

2022

  • RepMix: Representation Mixing for Robust Attribution of Synthesized Images. ECCV 2022
    Tu Bui, Ning Yu, and John Collomosse. University of Surrey, UK

  • Deepfake Network Architecture Attribution. AAAI 2022
    Tianyun Yang, Ziyao Huang, Juan Cao, Lei Li, Xirong Li. Chinese Academy of Sciences, China
    核心思想:提出DNA-Det,一阶段使用自监督学习使模型学习用于分类的特征,二阶段实施GAN架构分类。两阶段均使用对比学习

  • Did you use my GAN to generate fake? post-hoc attribution of GAN images via latent recovery. IJCNN 2022
    Syou Hirofumi; Kazuto Fukuchi; Yohei Akimoto; Jun Sakuma. Univresity of Tskuba, Japan

2023

  • Where Did I Come From? Origin Attribution of AI-Generated Images. NeurIPS, 2023
    Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, Shiqing Ma. Rutgers University, USA

  • DE-FAKE- Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models. CCS, 2023
    Zeyang Sha, Zheng Li, Ning Yu, Yang Zhang. CISPA, Gernamy

  • Reverse engineering of generative models: Inferring model hyperparameters from generated images.IEEE TPAMI 2023
    Vishal Asnani, Xi Yin, Tal Hassner, Xiaoming Liu. Michigan State University, USA

  • Open Set Synthetic Image Source Attribution. BMVC 2023
    Shengbang Fang, Tai D. Nguyen, Matthew C. Stamm. Drexel University, USA

  • Progressive Open Space Expansion for Open-Set Model Attribution. CVPR 2023
    Tianyun Yang, Danding Wang, Fan Tang, Xinying Zhao, Juan Cao, Sheng Tang. Chinese Academy of Sciences, China

  • Open Set Classification of GAN-based Image Manipulations via a ViT-based Hybrid Architecture. CVPR Workshops 2023
    Jun Wang, Omran Alamayreh Benedetta Tondi Mauro Barni. University of Siena, Italy

2024

  • Single-Model Attribution of Generative Models Through Final-Layer Inversion. ICML, 2024
    Mike Laszkiewicz, Jonas Ricker, Johannes Lederer, Asja Fischer. Ruhr University Bochum, Germany

  • How to Trace Latent Generative Model Generated Images without Artificial Watermark? ICML, 2024
    Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, Shiqing Ma. Rutgers University, USA

  • Tiny Autoencoders are Effective Few-Shot Generative Model Detectors. WIFS, 2024
    Luca Bindini, Giulia Bertazzini, Daniele Baracchi, Dasara Shullani, Paolo Frasconi, and Alessandro Piva. University of Florence, Italy

  • A siamese-based verification system for open-set architecture attribution of synthetic images. PRL, 2024
    Lydia Abady, Jun Wang, Benedetta Tondi, Mauro Barni. University of Siena, Italy

2025

  • Detecting Origin Attribution for Text-to-Image Diffusion Models. WACV, 2025
    Katherine Xu, Lingzhi Zhang, Jianbo Shi. University of Pennsylvania, USA

  • ReTD: Reconstruction-Based Traceability Detection for Generated Images ICASSP, 2025
    Weizhuo Chen, Fangfang Yuan, Cong Cao, Kun Peng, Dakui Wang, Yanbing Liu. Chinese Academy of Sciences, China
    核心思想:重建残差送入(CNN+Transformer+MLP)训练完成检测

  • Few-Shot Class-Incremental Model Attribution Using Learnable Representation From CLIP-ViT Features. arXiv, 2025
    Hanbyul Lee, Juneho Yi. Sungkyunkwan University, South Korea

  • LoRAX: LoRA eXpandable Networks for Continual Synthetic Image Attribution arXiv, 2025
    Danielle Sullivan-Pao, Nicole Tian, Pooya Khorrami. MIT Lincoln Laboratory & Yale University, USA

PS:如有遗漏,欢迎评论区补充~

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词