前言:本篇博客总结 2019 年至今 通用AIGI(AI-Generated Image)模型溯源相关研究工作。
–
AIGI溯源相关博客如下:
- 文献研读|AIGC溯源场景及研究进展
目录
- 2019
- 2020
- 2021
- 2022
- 2023
- 2024
- 2025
2019
-
Attributing Fake Images to GANs: Learning and Analyzing GAN Fingerprints. ICCV 2019
Ning Yu, Larry Davis, Mario Fritz. University of Maryland, USA -
Do GANs Leave Artificial Fingerprints? MIPR,2019.
Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, Giovanni Poggi. University Federico II of Naples, Italy
核心思想:基于GAN噪声残差相似度的检测。受相机固有缺陷导致的光响应非均匀性(PRNU)启发,提取GAN生成图像中的指纹,借此完成溯源 -
Incremental learning for the detection and classification of GAN-generated image. WIFS, 2019
Francesco Marra; Cristiano Saltori; Giulia Boato; Luisa Verdoliva. University Federico II of Naples, Italy -
Source Generator Attribution via Inversion. CVPR Workshops 2019
Michael Albright and Scott McCloskey. Honeywell ACST
核心思想:给定一个probe image,和多个GANs,通过损失优化的方式,找到最佳结果对应的潜向量,选择重建效果最接近probe image的GAN -
Scalable fine-grained generated image classification based on deep metric learning. arXiv, 2019
Xuan, Xinsheng and Peng, Bo and Wang, Wei and Dong, Jing. Chinese Academy of Sciences, China
2020
- Attributing and Detecting Fake Images Generated by Known GANs. SPW, 2020
Matthew Joslin and Shuang Hao. University of Texas at Dallas, USA
核心思想:GAN图像FFT特征的平均作为fingerprint,然后和 test image FFT 计算相似度
2021
-
Towards discovery and attribution of open-world gan generated images. ICCV 2021
Sharath Girish, Saksham Suri, Saketh Rambhatla, Abhinav Shrivastava. University of Maryland, USA -
Does a GAN leave distinct model-specific fingerprints?. BMVC 2021
Yuzhen Ding, Nupur Thakur and baoxin Li. Arizona State University, USA -
Deepfake attribution: On the source identification of artificially generated images. Wires, 2021
Brandon Khoo, Raphaël C.-W. Phan, Chern-Hong Lim. University, Malaysia, Malaysia -
On attribution of deepfakes. arXiv 20210303
Baiwu Zhang, Jin Peng Zhou, Ilia Shumailov, Nicolas Papernot. University of Toronto, Canada
核心思想:提出Strict Attribution 和 Relaxed attribution 场景,想法和Michael Albright的那篇类似
2022
-
RepMix: Representation Mixing for Robust Attribution of Synthesized Images. ECCV 2022
Tu Bui, Ning Yu, and John Collomosse. University of Surrey, UK -
Deepfake Network Architecture Attribution. AAAI 2022
Tianyun Yang, Ziyao Huang, Juan Cao, Lei Li, Xirong Li. Chinese Academy of Sciences, China
核心思想:提出DNA-Det,一阶段使用自监督学习使模型学习用于分类的特征,二阶段实施GAN架构分类。两阶段均使用对比学习 -
Did you use my GAN to generate fake? post-hoc attribution of GAN images via latent recovery. IJCNN 2022
Syou Hirofumi; Kazuto Fukuchi; Yohei Akimoto; Jun Sakuma. Univresity of Tskuba, Japan
2023
-
Where Did I Come From? Origin Attribution of AI-Generated Images. NeurIPS, 2023
Zhenting Wang, Chen Chen, Yi Zeng, Lingjuan Lyu, Shiqing Ma. Rutgers University, USA -
DE-FAKE- Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models. CCS, 2023
Zeyang Sha, Zheng Li, Ning Yu, Yang Zhang. CISPA, Gernamy -
Reverse engineering of generative models: Inferring model hyperparameters from generated images.IEEE TPAMI 2023
Vishal Asnani, Xi Yin, Tal Hassner, Xiaoming Liu. Michigan State University, USA -
Open Set Synthetic Image Source Attribution. BMVC 2023
Shengbang Fang, Tai D. Nguyen, Matthew C. Stamm. Drexel University, USA -
Progressive Open Space Expansion for Open-Set Model Attribution. CVPR 2023
Tianyun Yang, Danding Wang, Fan Tang, Xinying Zhao, Juan Cao, Sheng Tang. Chinese Academy of Sciences, China -
Open Set Classification of GAN-based Image Manipulations via a ViT-based Hybrid Architecture. CVPR Workshops 2023
Jun Wang, Omran Alamayreh Benedetta Tondi Mauro Barni. University of Siena, Italy
2024
-
Single-Model Attribution of Generative Models Through Final-Layer Inversion. ICML, 2024
Mike Laszkiewicz, Jonas Ricker, Johannes Lederer, Asja Fischer. Ruhr University Bochum, Germany -
How to Trace Latent Generative Model Generated Images without Artificial Watermark? ICML, 2024
Zhenting Wang, Vikash Sehwag, Chen Chen, Lingjuan Lyu, Dimitris N. Metaxas, Shiqing Ma. Rutgers University, USA -
Tiny Autoencoders are Effective Few-Shot Generative Model Detectors. WIFS, 2024
Luca Bindini, Giulia Bertazzini, Daniele Baracchi, Dasara Shullani, Paolo Frasconi, and Alessandro Piva. University of Florence, Italy -
A siamese-based verification system for open-set architecture attribution of synthetic images. PRL, 2024
Lydia Abady, Jun Wang, Benedetta Tondi, Mauro Barni. University of Siena, Italy
2025
-
Detecting Origin Attribution for Text-to-Image Diffusion Models. WACV, 2025
Katherine Xu, Lingzhi Zhang, Jianbo Shi. University of Pennsylvania, USA -
ReTD: Reconstruction-Based Traceability Detection for Generated Images ICASSP, 2025
Weizhuo Chen, Fangfang Yuan, Cong Cao, Kun Peng, Dakui Wang, Yanbing Liu. Chinese Academy of Sciences, China
核心思想:重建残差送入(CNN+Transformer+MLP)训练完成检测 -
Few-Shot Class-Incremental Model Attribution Using Learnable Representation From CLIP-ViT Features. arXiv, 2025
Hanbyul Lee, Juneho Yi. Sungkyunkwan University, South Korea -
LoRAX: LoRA eXpandable Networks for Continual Synthetic Image Attribution arXiv, 2025
Danielle Sullivan-Pao, Nicole Tian, Pooya Khorrami. MIT Lincoln Laboratory & Yale University, USA
PS:如有遗漏,欢迎评论区补充~