欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 汽车 > 维修 > 论文阅读:Mixture-of-Agents Enhances Large Language Model Capabilities

论文阅读:Mixture-of-Agents Enhances Large Language Model Capabilities

2025/2/24 7:35:09 来源:https://blog.csdn.net/handsome_lionet/article/details/143692027  浏览:    关键词:论文阅读:Mixture-of-Agents Enhances Large Language Model Capabilities

一、简介

旨在利用多个 LLM 的专业知识增强自然语言理解和生成任务的能力。

提出了一种新方法,通过代理混合 (MoA) 方法利用多个 LLM 在不同专业方面的优势。即一个分层的 MoA 架构,其中每一层都包含多个 LLM 代理。每个代理都将上一层代理的所有输出作为生成其响应的辅助信息。MoAmodels 在 AlpacaEval 2.0、MT-Bench 和 FLASK 上实现了最先进的性能,超过了 GPT-4 Omni。

创新点

(1) 提出了一个 Mixture-of-Agents 框架,旨在利用多个 LLM 的优势,从而提高它们的推理和语言生成能力。

(2) 语言模型协作性的发现:即 LLM 之间的遗传协作性,其中模型在可以访问其他模型的输出时往往会产生更高质量的响应,即使这些输出的质量较低。

二、模型

为了从多个LLM中获得最佳结果,需要准确描述不同的模型在写作过程中的优点。可以将模型分为两个不同的角色

Proposer:生成有用的响应以供其他模型参考使用。作为proposer角色的模型不一定产生高分回答,但是必要条件是提供更多的上下文和观点,最终在被聚合器使用时有助于更好的最终回答。

Aggregator:将其他模型的响应合成到单一、高质量输出的模型。

聚合器获得的模型输出和prompt

三、实验

benchmark:主要评估 AlpacaEval 2.0上的模型,此外,还在 MT-Bench 上进行了评估

model:Qwen1.5-110B-Chat、Qwen1.572B-Chat、WizardLM-8x22B、LLaMA-3-70B-Instruct、Mixtral-8x22B-v0.1、dbrx-instruct。构建了 3 个 MoA 层,并在每个 MoA 层中使用相同的模型集。使用 Qwen1.5-110BChat 作为最后一层的聚合器。

另外开发了一个名为 MoA w/ GPT-4o 的变体,它通过使用 GPT-4o 作为最终 MoA 层中的聚合器,以优先考虑高质量输出。

另一个变体 MoA-Lite 强调成本效益。它使用与 proposer 相同的模型集,但仅包含 2 个 MoA 层,使用 Qwen1.5-72B-Chat 作为聚合器。

所有推理都通过 Together Inference Endpoint 运行。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词