一、项目准备
1. 创建Spring Boot项目
- 使用Spring Initializr:选择依赖项(Spring Web、Lombok、Apache HttpClient)。
- Maven/Gradle配置:
<!-- Web和JSON处理 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- HTTP客户端 --> <dependency><groupId>org.apache.httpcomponents</groupId><artifactId>httpclient</artifactId><version>4.5.13</version> </dependency>
2. 配置DeepSeek API密钥
- application.properties:
deepseek.api.key=your_api_key_here deepseek.api.url=https://api.deepseek.com/v1/chat/completions
- 安全建议:使用Jasypt加密或Vault管理密钥。
二、集成DeepSeek API
1. 封装HTTP请求工具类
@Component
public class DeepSeekClient {@Value("${deepseek.api.url}")private String apiUrl;@Value("${deepseek.api.key}")private String apiKey;public String sendRequest(String prompt) throws IOException {HttpPost post = new HttpPost(apiUrl);post.setHeader("Authorization", "Bearer " + apiKey);post.setHeader("Content-Type", "application/json");// 构建请求体String jsonBody = String.format("{\"model\":\"deepseek-chat\",\"messages\":[{\"role\":\"user\",\"content\":\"%s\"}]}", prompt);post.setEntity(new StringEntity(jsonBody));try (CloseableHttpClient client = HttpClients.createDefault();CloseableHttpResponse response = client.execute(post)) {return EntityUtils.toString(response.getEntity());}}
}
2. 定义请求/响应模型
@Data
public class DeepSeekRequest {private String model;private List<Message> messages;
}@Data
public class DeepSeekResponse {private List<Choice> choices;
}@Data
public class Choice {private Message message;
}
三、功能优化:模块化与增强
1. 服务层抽象
@Service
public class AIService {@Autowiredprivate DeepSeekClient client;public String processQuery(String userInput) {try {return client.sendRequest(userInput);} catch (IOException e) {throw new AIProcessingException("API调用失败", e);}}
}
2. 异步处理提升性能
@EnableAsync
@Configuration
public class AsyncConfig implements AsyncConfigurer {@Overridepublic Executor getAsyncExecutor() {ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();executor.setCorePoolSize(10);executor.setMaxPoolSize(50);executor.setQueueCapacity(100);executor.initialize();return executor;}
}@Service
public class AsyncAIService {@Asyncpublic CompletableFuture<String> asyncProcess(String input) {return CompletableFuture.completedFuture(process(input));}
}
3. 缓存机制
@Cacheable(value = "aiResponses", key = "#input.hashCode()")
public String getCachedResponse(String input) {return client.sendRequest(input);
}
四、系统级优化
1. 消息队列集成(RabbitMQ示例)
@RabbitListener(queues = "aiTasks")
public void handleTask(String task) {aiService.process(task);
}
2. 分布式部署方案
- Nginx配置:
upstream ai_cluster {server 192.168.1.10:8080;server 192.168.1.11:8080;keepalive 32; }
3. 监控与日志
- Spring Boot Actuator:
management.endpoints.web.exposure.include=health,metrics,prometheus
五、安全增强
1. 速率限制
@Bean
public RateLimiter rateLimiter() {return RateLimiter.create(100); // 每秒100次请求
}
2. 敏感数据过滤
@Configuration
public class LogFilter extends OncePerRequestFilter {@Overrideprotected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain) {if (request.getRequestURI().contains("api/deepseek")) {log.info("Filtered API key in logs");}}
}
六、部署与测试
1. Docker化部署
FROM openjdk:17
COPY target/ai-system.jar /app.jar
ENTRYPOINT ["java","-jar","/app.jar"]
2. 压力测试
wrk -t4 -c100 -d30s http://localhost:8080/api/ai
七、完整调用示例
@RestController
@RequestMapping("/api/ai")
public class AIController {@Autowiredprivate AIService aiService;@PostMapping("/ask")public ResponseEntity<String> askQuestion(@RequestBody String question) {return ResponseEntity.ok(aiService.processQuery(question));}
}
八、扩展方向
- 多模态支持:集成图像/语音处理模块
- 多AI供应商:配置化切换ChatGPT/Claude等
- 业务集成:与企业CRM/ERP系统对接
- 模型微调:基于企业数据定制AI模型
通过以上步骤,您的Spring Boot应用即可升级为智能AI系统,具备高可用、易扩展的AI处理能力。建议持续关注DeepSeek的API更新,及时优化集成方案。