vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。
更多 vLLM 中文文档及教程可访问 →https://vllm.hyper.ai/
源代码:vllm-project/vllm
from vllm import LLM, SamplingParams
from vllm.utils import FlexibleArgumentParserdef main():parser = FlexibleArgumentParser(description='AQLM examples')parser.add_argument('--model','-m',type=str,default=None,help='model path, as for HF')parser.add_argument('--choice','-c',type=int,default=0,help='known good models by index, [0-4]')parser.add_argument('--tensor-parallel-size','-t',type=int,default=1,help='tensor parallel size')args = parser.parse_args()models = ["ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf","ISTA-DASLab/Llama-2-7b-AQLM-2Bit-2x8-hf","ISTA-DASLab/Llama-2-13b-AQLM-2Bit-1x16-hf","ISTA-DASLab/Mixtral-8x7b-AQLM-2Bit-1x16-hf","BlackSamorez/TinyLlama-1_1B-Chat-v1_0-AQLM-2Bit-1x16-hf",]model = LLM(args.model if args.model is not None else models[args.choice],tensor_parallel_size=args.tensor_parallel_size)sampling_params = SamplingParams(max_tokens=100, temperature=0)outputs = model.generate("Hello my name is",sampling_params=sampling_params)print(outputs[0].outputs[0].text)if __name__ == '__main__':main()