欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 教育 > 锐评 > 第R6周:LSTM实现糖尿病探索与预测

第R6周:LSTM实现糖尿病探索与预测

2025/2/21 3:17:00 来源:https://blog.csdn.net/weixin_47918905/article/details/145634901  浏览:    关键词:第R6周:LSTM实现糖尿病探索与预测
  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

    文章目录

      • 1、设置GPU
      • 2、导入数据
      • 3、数据检查
      • 4、数据分布分析
      • 5、数据集构建
      • 6、定义模型
      • 7、定义训练函数
      • 8、定义测试函数
      • 9、训练模型
      • 10、结果可视化

电脑环境:
语言环境:Python 3.8.0
深度学习:torch 2.5.1+cu124

1、设置GPU

import torch.nn.functional as F
import torch.nn as nn
import torch, torchvisiondevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

2、导入数据

import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['savefig.dpi'] = 500
plt.rcParams['figure.dpi'] = 500
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签import warnings
warnings.filterwarnings("ignore")DataFrame = pd.read_excel('./dia.xls')
DataFrame.head()

在这里插入图片描述

DataFrame.shape

代码输出:

(1006, 16)

3、数据检查

# 查看是否有缺失值
print("数据缺失值------------------")
print(DataFrame.isnull().sum())

代码输出:

数据缺失值------------------
卡号 0
性别 0
年龄 0
高密度脂蛋白胆固醇 0
低密度脂蛋白胆固醇 0
极低密度脂蛋白胆固醇 0
甘油三酯 0
总胆固醇 0
脉搏 0
舒张压 0
高血压史 0
尿素氮 0
尿酸 0
肌酐 0
体重检查结果 0
是否糖尿病 0
dtype: int64

# 查看数据是否有重复值
print("数据重复值------------------")
print('数据的重复值为:'f'{DataFrame.duplicated().sum()}')

代码输出:

数据重复值------------------
数据的重复值为:0

4、数据分布分析

feature_map = {'年龄': '年龄','高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇','低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇','极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇','甘油三酯': '甘油三酯','总胆固醇': '总胆固醇','脉搏': '脉搏','舒张压': '舒张压','高血压史': '高血压史','尿素氮': '尿素氮','尿酸': '尿酸','肌酐': '肌酐','体重检查结果': '体重检查结果'
}plt.figure(figsize=(15, 10))
for i, (col, col_name) in enumerate(feature_map.items(), 1):plt.subplot(3, 5, i)sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col])plt.title(f'{col_name}的箱线图', fontsize=14)plt.ylabel('数值', fontsize=12)plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()

在这里插入图片描述

5、数据集构建

from sklearn.preprocessing import StandardScaler# '高密度脂蛋白胆固醇'字段与糖尿病负相关,故在X 中去掉该字段
X = DataFrame.drop(['卡号', '是否糖尿病', '高密度脂蛋白胆固醇'], axis=1)
y = DataFrame['是否糖尿病']# sc_X = StandardScaler
# X = sc_X.fit_transform(X)X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, random_state=1)train_X.shape, train_y.shape

代码输出:

(torch.Size([804, 13]), torch.Size([804]))

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(train_X, train_y), batch_size=64, shuffle=False)
test_dl = DataLoader(TensorDataset(test_X, test_y), batch_size=64, shuffle=False)

6、定义模型

class model_lstm(nn.Module):def __init__(self):super(model_lstm, self).__init__()self.lstm0 = nn.LSTM(input_size=13, hidden_size=300, num_layers=1, batch_first=True)self.lstm1 = nn.LSTM(input_size=300, hidden_size=300, num_layers=1, batch_first=True)self.lstm2 = nn.LSTM(input_size=300, hidden_size=300, num_layers=1, batch_first=True)self.dropout = nn.Dropout(0.3)self.fc0 = nn.Linear(300, 2)def forward(self, x):out, hidden1 = self.lstm0(x)out, hidden2 = self.lstm1(out, hidden1)out, _ = self.lstm2(out, hidden2)out = self.dropout(out)out = self.fc0(out)return outmodel = model_lstm().to(device)
model

代码输出:

model_lstm(
(lstm0): LSTM(13, 300, batch_first=True)
(lstm1): LSTM(300, 300, batch_first=True)
(lstm2): LSTM(300, 300, batch_first=True)
(dropout): Dropout(p=0.3, inplace=False)
(fc0): Linear(in_features=300, out_features=2, bias=True)
)

7、定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

8、定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

9、训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-3
opt = torch.optim.Adam(model.parameters(), lr= learn_rate)epochs     = 30train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,epoch_test_acc*100, epoch_test_loss, lr))print('Done')

代码输出:

Epoch: 1, Train_acc:53.0%, Train_loss:0.695, Test_acc:53.0%, Test_loss:0.716, Lr:1.00E-03
Epoch: 2, Train_acc:56.0%, Train_loss:0.686, Test_acc:53.0%, Test_loss:0.718, Lr:1.00E-03
Epoch: 3, Train_acc:56.2%, Train_loss:0.683, Test_acc:53.0%, Test_loss:0.725, Lr:1.00E-03
Epoch: 4, Train_acc:56.6%, Train_loss:0.671, Test_acc:57.4%, Test_loss:0.701, Lr:1.00E-03
Epoch: 5, Train_acc:63.7%, Train_loss:0.621, Test_acc:62.4%, Test_loss:0.693, Lr:1.00E-03
Epoch: 6, Train_acc:69.2%, Train_loss:0.554, Test_acc:62.9%, Test_loss:0.598, Lr:1.00E-03
Epoch: 7, Train_acc:71.9%, Train_loss:0.509, Test_acc:66.3%, Test_loss:0.605, Lr:1.00E-03
Epoch: 8, Train_acc:74.4%, Train_loss:0.491, Test_acc:67.8%, Test_loss:0.614, Lr:1.00E-03
Epoch: 9, Train_acc:77.5%, Train_loss:0.452, Test_acc:70.8%, Test_loss:0.633, Lr:1.00E-03
Epoch:10, Train_acc:79.0%, Train_loss:0.430, Test_acc:73.8%, Test_loss:0.584, Lr:1.00E-03
Epoch:11, Train_acc:79.4%, Train_loss:0.416, Test_acc:75.7%, Test_loss:0.681, Lr:1.00E-03
Epoch:12, Train_acc:79.6%, Train_loss:0.414, Test_acc:70.3%, Test_loss:0.792, Lr:1.00E-03
Epoch:13, Train_acc:83.5%, Train_loss:0.376, Test_acc:71.8%, Test_loss:0.787, Lr:1.00E-03
Epoch:14, Train_acc:83.3%, Train_loss:0.354, Test_acc:72.3%, Test_loss:0.817, Lr:1.00E-03
Epoch:15, Train_acc:84.0%, Train_loss:0.338, Test_acc:69.3%, Test_loss:0.811, Lr:1.00E-03
Epoch:16, Train_acc:85.2%, Train_loss:0.321, Test_acc:70.3%, Test_loss:0.809, Lr:1.00E-03
Epoch:17, Train_acc:85.1%, Train_loss:0.320, Test_acc:67.8%, Test_loss:1.088, Lr:1.00E-03
Epoch:18, Train_acc:83.1%, Train_loss:0.345, Test_acc:67.8%, Test_loss:0.774, Lr:1.00E-03
Epoch:19, Train_acc:86.1%, Train_loss:0.304, Test_acc:68.8%, Test_loss:0.865, Lr:1.00E-03
Epoch:20, Train_acc:84.7%, Train_loss:0.313, Test_acc:72.3%, Test_loss:0.908, Lr:1.00E-03
Epoch:21, Train_acc:87.3%, Train_loss:0.284, Test_acc:72.8%, Test_loss:0.939, Lr:1.00E-03
Epoch:22, Train_acc:88.8%, Train_loss:0.252, Test_acc:71.8%, Test_loss:1.224, Lr:1.00E-03
Epoch:23, Train_acc:90.5%, Train_loss:0.222, Test_acc:66.8%, Test_loss:1.156, Lr:1.00E-03
Epoch:24, Train_acc:89.8%, Train_loss:0.206, Test_acc:67.8%, Test_loss:1.117, Lr:1.00E-03
Epoch:25, Train_acc:93.0%, Train_loss:0.175, Test_acc:70.8%, Test_loss:1.227, Lr:1.00E-03
Epoch:26, Train_acc:92.9%, Train_loss:0.170, Test_acc:67.8%, Test_loss:1.311, Lr:1.00E-03
Epoch:27, Train_acc:90.9%, Train_loss:0.184, Test_acc:66.3%, Test_loss:1.432, Lr:1.00E-03
Epoch:28, Train_acc:92.0%, Train_loss:0.180, Test_acc:68.3%, Test_loss:1.397, Lr:1.00E-03
Epoch:29, Train_acc:92.0%, Train_loss:0.191, Test_acc:65.3%, Test_loss:1.339, Lr:1.00E-03
Epoch:30, Train_acc:90.9%, Train_loss:0.208, Test_acc:67.3%, Test_loss:1.235, Lr:1.00E-03
Done

10、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now()epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time)plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词