欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 使用 OpenCV 和 Haar Cascade 检测人脸

使用 OpenCV 和 Haar Cascade 检测人脸

2025/2/24 0:33:13 来源:https://blog.csdn.net/Ppandaer/article/details/142885957  浏览:    关键词:使用 OpenCV 和 Haar Cascade 检测人脸

技术讲解

1. 环境准备

Python 和 OpenCV

确保你的开发环境中安装了 Python 3.x 和 OpenCV。OpenCV 是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和计算机视觉算法。它支持多种编程语言,包括 Python。

安装 OpenCV:

pip install opencv-python
2. Haar Cascade 模型

Haar Cascade 分类器

OpenCV 提供了预训练的 Haar Cascade 分类器来检测图像中的人脸。cv2.CascadeClassifier 是用来加载这些分类器的一个类。在这个例子中,我们使用的是 haarcascade_frontalface_default.xml,这是 OpenCV 提供的一个默认的人脸检测模型。

加载 Haar Cascade 模型:

face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
3. CUDA 设备设置

CUDA 设备可见性

如果你的应用程序需要使用 GPU,可以使用环境变量 CUDA_VISIBLE_DEVICES 来设置哪些 GPU 设备是可见的。这在有多个 GPU 的情况下特别有用,可以指定应用程序使用特定的 GPU。

设置 CUDA 可见设备:

import cv2
import os
from pathlib import Path
import shutil# 加载预训练的 Haar cascade 模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')# 设置 CUDA 可见设备
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 设置为你的 GPU 设备号# 定义参考文件夹
REFERENCE_DIR = "no_faces"
os.makedirs(REFERENCE_DIR, exist_ok=True)
4. 图像处理

加载和调整大小

为了提高检测效率,通常会对图像进行缩放。缩放可以减少处理时间,同时保持足够的分辨率来进行人脸检测。

加载并调整图像大小:

def load_and_resize_image(file_path, max_size=1024):image = cv2.imread(file_path)if image is None:raise FileNotFoundError(f"Could not load image from {file_path}")height, width = image.shape[:2]scale = min(max_size / height, max_size / width)image = cv2.resize(image, (int(width * scale), int(height * scale)))return image

人脸检测

使用 Haar Cascade 分类器检测图像中的人脸。detectMultiScale 方法接受多个参数,其中 scaleFactor 控制每次图像尺寸变化的比例因子,minNeighbors 表示检测到的目标周围至少有多少个邻居才能认定为真实目标,minSize 表示检测到的目标的最小尺寸。

检测图像中的人脸:

def detect_faces(image):gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)face_rects = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))return face_rects
5. 文件操作

移动图片

当检测到图片中没有人脸时,将图片移动到一个特定的文件夹中。使用 shutil.move 函数可以轻松实现这一点。

移动图片到无脸文件夹:

def move_image_to_no_faces_folder(file_path):destination = Path(REFERENCE_DIR) / file_path.nameshutil.move(str(file_path), str(destination))
6. 主函数

最后,编写一个主函数来处理指定文件夹中的所有 .png 图片,并调用上述函数完成人脸检测和图片分类。

处理图片:

def process_image(png_file):try:print(f"Processing {png_file.name}...")image = load_and_resize_image(png_file)face_rects = detect_faces(image)if len(face_rects) == 0:print(f"No faces detected in {png_file.name}. Moving to no_faces folder.")move_image_to_no_faces_folder(png_file)else:print(f"Faces detected in {png_file.name}.")except Exception as e:print(f"Error processing {png_file.name}: {str(e)}")def process_images(directory):directory_path = Path(directory)png_files = list(directory_path.glob('*.png'))for png_file in png_files:process_image(png_file)if __name__ == "__main__":input_directory = 'images'  # 请确保这个路径是正确的process_images(input_directory)

总结

通过上述代码,我们可以自动检测图片中是否存在人脸,并将无人脸的图片分类到特定文件夹中。这种方法在处理大量图片时非常有用,特别是在需要对图片进行初步筛选的情况下。使用 OpenCV 的 Haar Cascade 模型和 Python 的标准库函数,我们可以轻松实现这一功能。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com