简介
鱼眼图片的批量矫正算法是一种用于鱼眼图像矫正技术,它能够通过自己设计校正系数,从而校正图片的鱼眼失真,从而提高得到一个超广角的图像效果。
使用方法
图片数据存储:将待矫正的图片存储在input_images文件夹中。
设置矫正系数:在代码中,矫正系数k取0-1之间,值越小矫正越弱。(注:如果一次矫正达不到矫正效果,可将校正后的图片放入input_images文件夹中二次矫正。)
输出矫正后图片:矫正后的图片存储在corrected_images文件夹中。
import cv2
import os
import glob
import numpy as npdef load_images_from_folder(folder_path):"""批量加载文件夹中的所有图片"""images = []image_paths = glob.glob(os.path.join(folder_path, '*.jpg'))for path in image_paths:img = cv2.imread(path)if img is not None:images.append((img, path))return imagesdef fisheye_correction(image, k=0.3):"""应用鱼眼矫正。参数k控制矫正强度,值越低矫正越弱"""h, w = image.shape[:2]fx = fy = wcx, cy = w / 2, h / 2# 鱼眼校正的相机矩阵和失真系数K = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])D = np.array([-k, k, 0, 0])# 计算矫正映射map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, (w, h), cv2.CV_16SC2)corrected_image = cv2.remap(image, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)return corrected_imagedef process_images(input_folder, output_folder, k=0.3):"""加载图像,进行鱼眼矫正,并保存矫正后的图像"""if not os.path.exists(output_folder):os.makedirs(output_folder)images = load_images_from_folder(input_folder)for img, path in images:corrected_img = fisheye_correction(img, k)# 保存矫正后的图片到输出文件夹output_path = os.path.join(output_folder, os.path.basename(path))cv2.imwrite(output_path, corrected_img)print(f"已保存矫正后的图片:{output_path}")if __name__ == "__main__":# 输入和输出文件夹路径input_folder = "./input_images"output_folder = "./corrected_images"# 矫正系数k,0-1之间,值越小矫正越弱correction_coefficient = 0.3# 批量处理图像process_images(input_folder, output_folder, correction_coefficient)