欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > 嵌入式设备网络的动态ID分配机制实现

嵌入式设备网络的动态ID分配机制实现

2025/4/19 19:18:43 来源:https://blog.csdn.net/Dustinthewine/article/details/147340436  浏览:    关键词:嵌入式设备网络的动态ID分配机制实现

文章目录

  • 前言
  • 一、系统设计要点
  • 二、核心数据结构
    • 2.1 设备唯一标识(DeviceUID)
    • 2.2 节点信息(Node)
    • 2.3 节点管理器(NodeManager)
  • 三、核心算法实现
    • 3.1 初始化与清理
      • 3.1.1 初始化节点管理器
      • 3.1.2 清理节点管理器
    • 3.2 动态ID分配策略
      • 3.2.1 查找最小可用ID
      • 3.2.2 ID使用检查
    • 3.3 心跳处理机制
    • 3.4 超时检测机制
  • 四、节点查找与管理
    • 4.1 通过UID查找节点
    • 4.2 通过ID查找节点
    • 4.3 获取活跃节点列表
  • 五、回调机制实现
    • 5.1 回调函数注册
    • 5.2 示例回调函数
  • 六、应用示例
  • 七、总结


前言

在嵌入式设备网络中,节点的动态加入与退出是常态,尤其是在无人机、传感器网络、智能家居等系统中,节点通常无法提前预设 ID,这就要求系统具备动态 ID 分配与管理能力。本篇博客将围绕“动态 ID 管理”这一核心,介绍一个基于设备 UID 的动态 ID 分配系统,支持重复上线检测、最小可用 ID 分配、ID 冲突检测、ID 释放与复用等功能,代码完全由 C 语言实现,结构清晰,易于移植与扩展。


一、系统设计要点

该系统以节点唯一标识符 DeviceUID 为基础,实现了以下关键特性:

  • 动态 ID 分配:无需提前为设备分配 ID,系统自动为新设备分配最小可用 ID。

  • UID 唯一识别机制:通过对 UID 的比较实现节点重复检测与状态更新。

  • ID 冲突检测:避免多个设备使用相同 ID 导致状态混乱。

  • ID 释放与复用:支持节点主动释放 ID,或超时后自动回收,以复用资源。

  • 回调机制:支持注册上线、下线回调函数,便于系统业务集成。

  • 心跳检测:通过心跳机制维护节点活跃状态

  • 超时处理:自动检测并清理离线节点

二、核心数据结构

2.1 设备唯一标识(DeviceUID)

typedef struct {uint8_t bytes[6];  // 6字节的唯一设备标识
} DeviceUID;

这个结构体用于存储设备的唯一标识符,通常可以是MAC地址或其他硬件唯一ID。

2.2 节点信息(Node)

typedef struct Node {uint8_t id;          // 分配的节点IDDeviceUID uid;       // 设备唯一标识uint64_t lastSeenMs; // 最后活跃时间戳(毫秒)struct Node* next;   // 下一个节点指针
} Node;

每个节点包含分配的ID、设备唯一标识、最后活跃时间和指向下一个节点的指针。

2.3 节点管理器(NodeManager)

typedef struct {Node* head;                  // 链表头指针uint8_t activeCount;         // 活跃节点计数NodeOnlineCallback onOnline; // 节点上线回调函数NodeOfflineCallback onOffline; // 节点下线回调函数
} NodeManager;

节点管理器维护所有活跃节点的链表,并提供回调函数接口。

三、核心算法实现

3.1 初始化与清理

3.1.1 初始化节点管理器

void NodeManager_Init(NodeManager* manager) {manager->head = NULL;manager->activeCount = 0;manager->onOnline = NULL;manager->onOffline = NULL;
}

3.1.2 清理节点管理器

void NodeManager_Cleanup(NodeManager* manager) {Node* current = manager->head;while (current) {Node* next = current->next;// 回调通知节点离线if (manager->onOffline) {manager->onOffline(current->id, &current->uid);}free(current);current = next;}manager->head = NULL;manager->activeCount = 0;
}

3.2 动态ID分配策略

3.2.1 查找最小可用ID

static uint8_t FindMinAvailableID(NodeManager* manager) {for (uint8_t id = MIN_VALID_ID; id <= MAX_VALID_ID; id++) {if (!IsIDUsed(manager, id)) return id;}return INVALID_ID;
}

该算法从MIN_VALID_ID开始遍历,返回第一个未被使用的ID。

3.2.2 ID使用检查

static bool IsIDUsed(NodeManager* manager, uint8_t id) {Node* current = manager->head;while (current) {if (current->id == id) return true;current = current->next;}return false;
}

3.3 心跳处理机制

uint8_t ProcessHeartbeat(NodeManager* manager, uint8_t nodeId, const DeviceUID* uid) {// 1. 检查是否已有相同UID的节点Node* existing = FindNodeByUID(manager, uid);if (existing) {existing->lastSeenMs = GetSysTimeMs(); // 更新活跃时间return existing->id;}// 2. 检查请求的ID是否已被占用if (nodeId != INVALID_ID && FindNodeByID(manager, nodeId)) {nodeId = INVALID_ID; // 如果已被占用,则重置为无效ID}// 3. 分配新IDif (nodeId == INVALID_ID) {nodeId = FindMinAvailableID(manager);if (nodeId == INVALID_ID) return INVALID_ID; // 无可用ID}// 4. 添加新节点return AddNode(manager, nodeId, uid) ? nodeId : INVALID_ID;
}
  • 心跳处理流程

    1. 如果是已知节点,更新其活跃时间

    2. 如果是新节点,检查请求ID是否可用

    3. 分配最小可用ID

    4. 添加新节点到管理器

3.4 超时检测机制

void CheckTimeoutNodes(NodeManager* manager) {uint64_t now = GetSysTimeMs();Node** pnode = &manager->head;while (*pnode) {Node* current = *pnode;if ((now - current->lastSeenMs) > HEARTBEAT_TIMEOUT) {*pnode = current->next; // 从链表中移除// 回调通知节点离线if (manager->onOffline) {manager->onOffline(current->id, &current->uid);}free(current); // 释放节点内存manager->activeCount--;} else {pnode = &(*pnode)->next;}}
}

该函数遍历所有节点,检查最后活跃时间是否超时,超时则移除节点并触发下线回调。

四、节点查找与管理

4.1 通过UID查找节点

static Node* FindNodeByUID(NodeManager* manager, const DeviceUID* uid) {Node* current = manager->head;while (current) {if (CompareDeviceUID(&current->uid, uid)) return current;current = current->next;}return NULL;
}

4.2 通过ID查找节点

static Node* FindNodeByID(NodeManager* manager, uint8_t id) {Node* current = manager->head;while (current) {if (current->id == id) return current;current = current->next;}return NULL;
}

4.3 获取活跃节点列表

uint8_t GetActiveNodeIDs(NodeManager* manager, uint8_t* outputBuffer, uint8_t bufferSize) {uint8_t count = 0;Node* current = manager->head;while (current && count < bufferSize) {outputBuffer[count++] = current->id;current = current->next;}qsort(outputBuffer, count, sizeof(uint8_t), CompareNodeIDs);return count;
}

五、回调机制实现

5.1 回调函数注册

void NodeManager_RegisterCallbacks(NodeManager* manager, NodeOnlineCallback onOnline, NodeOfflineCallback onOffline) {manager->onOnline = onOnline;manager->onOffline = onOffline;
}

5.2 示例回调函数

void OnNodeOnline(uint8_t id, const DeviceUID* uid) {printf("[Callback] Node %d is ONLINE!\n", id);
}void OnNodeOffline(uint8_t id, const DeviceUID* uid) {printf("[Callback] Node %d is OFFLINE!\n", id);
}

六、应用示例

void TestNodeManager() {NodeManager manager;NodeManager_Init(&manager);// 注册回调NodeManager_RegisterCallbacks(&manager, OnNodeOnline, OnNodeOffline);// 模拟设备UIDDeviceUID uid1 = {{0x00, 0x11, 0x22, 0x33, 0x44, 0x55}};DeviceUID uid2 = {{0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB}};// 节点上线ProcessHeartbeat(&manager, 1, &uid1);  // 指定ID=1ProcessHeartbeat(&manager, INVALID_ID, &uid2);  // 自动分配ID// 打印活跃节点PrintActiveNodes(&manager);// 模拟超时printf("\nSimulating timeout...\n");GetSysTimeMs();  // 模拟时间流逝CheckTimeoutNodes(&manager);PrintActiveNodes(&manager);// 主动释放节点printf("\nManually releasing node...\n");ReleaseNodeID(&manager, 2);PrintActiveNodes(&manager);// 清理NodeManager_Cleanup(&manager);
}

七、总结

本文详细介绍了一个高效的动态ID管理系统的设计与实现,该系统具有以下优点:

  • 灵活性:支持动态ID分配和释放

  • 可靠性:通过心跳机制确保节点状态准确

  • 可扩展性:易于添加新功能如安全验证等

  • 低开销:内存占用小,适合嵌入式环境

  • 事件驱动:通过回调机制实现松耦合

这种动态ID管理方案非常适合物联网设备、传感器网络等需要管理大量动态节点的嵌入式应用场景。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词