题目1:300. 最长递增子序列 - 力扣(LeetCode)
class Solution {
public:int lengthOfLIS(vector<int>& nums) {// dp数组含义是第i个数的严格递增子序列的长度// 内层的递推公式就是 取 0 到 i - 1之间最大的dp数组 然后 + 1vector<int> dp(nums.size(), 1);int reslut = 1;for(int i = 1;i < nums.size();i++) {for(int j = 0;j < i;j++) {if(nums[i] > nums[j]) {dp[i] = max(dp[i], dp[j] + 1);}}reslut = max(reslut, dp[i]);}return reslut;}
};
题目2:674. 最长连续递增序列 - 力扣(LeetCode)
暴力解法:
class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {int reslut = 1;for(int i = 0;i < nums.size();i++) {int len = 1;for(int j = i;j < nums.size() - 1;j++) {if(nums[j + 1] > nums[j]) {len++;}else break;}reslut = max(reslut, len);}return reslut;}
};
动态规划
class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {vector<int> dp(nums.size(), 1);int reslut = 1;for(int i = 0;i < nums.size() - 1;i++) {if(nums[i + 1] > nums[i]) {dp[i + 1] = dp[i] + 1;}reslut = max(reslut, dp[i + 1]);}return reslut;}
};
题目3:718. 最长重复子数组 - 力扣(LeetCode)
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp(nums1.size() + 1, vector<int>(nums2.size() + 1));int reslut = 0;for(int i = 1;i <= nums1.size();i++) {for(int j = 1;j <= nums2.size();j++) {if(nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}reslut = max(reslut, dp[i][j]);}}return reslut;}
};