欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 建筑 > 二分查找5️⃣-山脉数组的封顶索引

二分查找5️⃣-山脉数组的封顶索引

2025/2/23 0:52:11 来源:https://blog.csdn.net/2202_75331338/article/details/141231402  浏览:    关键词:二分查找5️⃣-山脉数组的封顶索引

题目链接:852. 山脉数组的峰顶索引

题目描述:

给定一个长度为 n 的整数 山脉 数组 arr ,其中的值递增到一个 峰值元素 然后递减。

返回峰值元素的下标。

你必须设计并实现时间复杂度为 O(log(n)) 的解决方案。

示例 1:

输入:arr = [0,1,0]
输出:1

示例 2:

输入:arr = [0,2,1,0]
输出:1

示例 3:

输入:arr = [0,10,5,2]
输出:1

提示:

  • 3 <= arr.length <= 105

  • 0 <= arr[i] <= 106

  • 题目数据 保证 arr 是一个山脉数组

解法一(暴力查找):

算法思路:

◦ 峰顶的特点:比两侧的元素都要大。

◦ 因此,我们可以遍历数组内的每一个元素,找到某一个元素比两边的元素大即可。

class Solution {
public:int peakIndexInMountainArray(vector<int>& arr) {for(int i = 1 ; i < arr.size()-1; i++){// 遍历数组内每一个元素,直到找到峰顶if(arr[i] > arr[i-1] && arr[i] > arr[i+1])return i;}// 为了处理oj需要控制所有路径都有返回值return -1;}
};

解法二(二分查找):

算法思路:

本题的数组不是有序数组,但我们依然可以使用二分查找,原因是因为我们发现了“二段性”,对于山峰来说,我们会发现封顶的值是最大,对于封顶左边来说,后一个数比前一个数大;对于封顶右边来说,后一个数比前一个数小,因此我们可以分以下三种情况:

◦ 如果 mid 位置呈现上升趋势,说明我们接下来要在 [mid + 1, right] 区间继续搜索;

◦ 如果 mid 位置呈现下降趋势,说明我们接下来要在 [left, mid - 1] 区间搜索;

◦ 如果 mid 位置就是山峰,直接返回结果。

class Solution {
public:int peakIndexInMountainArray(vector<int>& arr) {int left = 0, right = arr.size()-1;while(left < right){int mid = left + (right - left) / 2;if(arr[mid] < arr[mid+1])left = mid + 1;elseright = mid ;}return left;}
};

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词