欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 家装 > pytorch实现单层线性回归模型

pytorch实现单层线性回归模型

2024/11/30 14:49:27 来源:https://blog.csdn.net/weixin_52341477/article/details/141174606  浏览:    关键词:pytorch实现单层线性回归模型

文章目录

    • 简述
      • 代码重构要点
    • 数学模型、运行结果
    • 数据构建与分批
    • 模型封装
    • 运行测试

简述

python使用 数值微分法 求梯度,实现单层线性回归-CSDN博客
python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客
数值微分求梯度、计算图求梯度,实现单层线性回归 模型速度差异及损失率比对-CSDN博客

上述文章都是使用python来实现求梯度的,是为了学习原理,实际使用上,pytorch实现了自动求导,原理也是(基于计算图的)链式求导,本文还就 “单层线性回归” 问题用pytorch实现。

代码重构要点

1.nn.Moudle

torch.nn.Module的继承、nn.Sequentialnn.Linear
torch.nn — PyTorch 2.4 documentation

对于nn.Sequential的理解可以看python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客一文代码的模型初始化与计算部分,如图:

在这里插入图片描述

nn.Sequential可以说是把图中标注的代码封装起来了,并且可以放多层。

2.torch.optim优化器

本例中使用随机梯度下降torch.optim.SGD()
torch.optim — PyTorch 2.4 documentation
SGD — PyTorch 2.4 documentation

3.数据构建与数据加载

data.TensorDatasetdata.DataLoader,之前为了实现数据分批,手动实现了data_iter,现在可以直接调用pytorch的data.DataLoader

对于data.DataLoader的参数num_workers,默认值为0,即在主线程中处理,但设置其它值时存在反而速度变慢的情况,以后再讨论。

数学模型、运行结果

y = X W + b y = XW + b y=XW+b

y为标量,X列数为2. 损失函数使用均方误差。

运行结果:

在这里插入图片描述

在这里插入图片描述

数据构建与分批

def build_data(weights, bias, num_examples):  x = torch.randn(num_examples, len(weights))  y = x.matmul(weights) + bias  # 给y加个噪声  y += torch.randn(1)  return x, y  def load_array(data_arrays, batch_size, num_workers=0, is_train=True):  """构造一个PyTorch数据迭代器"""  dataset = data.TensorDataset(*data_arrays)  return data.DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=is_train)

模型封装

class TorchLinearNet(torch.nn.Module):  def __init__(self):  super(TorchLinearNet, self).__init__()  model = nn.Sequential(Linear(in_features=2, out_features=1))  self.model = model  self.criterion = nn.MSELoss()  def predict(self, x):  return self.model(x)  def loss(self, y_predict, y):  return self.criterion(y_predict, y)

运行测试

if __name__ == '__main__':  start = time.perf_counter()  true_w1 = torch.rand(2, 1)  true_b1 = torch.rand(1)  x_train, y_train = build_data(true_w1, true_b1, 5000)  net = TorchLinearNet()  print(net)  init_loss = net.loss(net.predict(x_train), y_train)  loss_history = list()  loss_history.append(init_loss.item())  num_epochs = 3  batch_size = 50  learning_rate = 0.01  dataloader_workers = 6  data_loader = load_array((x_train, y_train), batch_size=batch_size, is_train=True)  optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)  for epoch in range(num_epochs):  # running_loss = 0.0  for x, y in data_loader:  y_pred = net.predict(x)  loss = net.loss(y_pred, y)  optimizer.zero_grad()  loss.backward()  optimizer.step()  # running_loss = running_loss + loss.item()  loss_history.append(loss.item())  end = time.perf_counter()  print(f"运行时间(不含绘图时间):{(end - start) * 1000}毫秒\n")  plt.title("pytorch实现单层线性回归模型", fontproperties="STSong")  plt.xlabel("epoch")  plt.ylabel("loss")  plt.plot(loss_history, linestyle='dotted')  plt.show()  print(f'初始损失值:{init_loss}')  print(f'最后一次损失值:{loss_history[-1]}\n')  print(f'正确参数: true_w1={true_w1}, true_b1={true_b1}')  print(f'预测参数:{net.model.state_dict()}')

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com