欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 房产 > 建筑 > 机器学习 之 DBSCAN算法 及实现

机器学习 之 DBSCAN算法 及实现

2025/2/23 7:03:51 来源:https://blog.csdn.net/m0_73697499/article/details/141651188  浏览:    关键词:机器学习 之 DBSCAN算法 及实现

1.K-means 与 DBSCAN 的比较

K-means 和 DBSCAN 都是聚类算法,但它们之间有显著的区别:

  • K-means

    • 基于中心点的方法,要求用户提前指定簇的数量。
    • 适用于球形簇,且簇大小相近。
    • 无法处理噪声数据和任意形状的簇。
  • DBSCAN

    • 基于密度的方法,无需提前指定簇的数量。
    • 可以发现任意形状的簇,并能识别噪声点。
    • 适合处理含有噪声的数据集和不规则形状的簇。

以下图中的数据为例,相比K-means,DBSCAN更适合作为数据的聚类算法。

2.DBSCAN 算法原理

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 是一种基于密度的聚类算法,其核心概念是通过密度来定义簇。DBSCAN 定义了一个点为核心点(Core Point),如果这个点周围半径 eps 内至少有 min_samples 个邻近点。如果一个点周围没有足够的邻近点,则被视为边界点(Border Point)。此外,任何不属于核心点或边界点的点都被视为噪声点。

3.实验代码详解

实验数据

data.txt 文件包含了多种啤酒的相关信息,具体来说,每一行代表了一种啤酒,并记录了四个属性:

  1. 名称 (name): 啤酒的品牌名称。
  2. 卡路里 (calories): 每份啤酒的卡路里含量。
  3. 钠含量 (sodium): 每份啤酒的钠含量。
  4. 酒精度 (alcohol): 啤酒的酒精百分比。
  5. 成本 (cost): 啤酒的成本或价格。

导入库和数据

import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metrics# 读取文件
beer = pd.read_table("data.txt", sep=' ', encoding='utf8', engine='python')# 传入变量(列名)
X = beer[["calories", "sodium", "alcohol", "cost"]]

DBSCAN 聚类分析

db = DBSCAN(eps=20, min_samples=2).fit(X)
labels = db.labels_
解释:
  • 我们使用 DBSCAN 类进行聚类分析。
  • eps 参数定义了邻域的半径,即每个核心点周围必须有足够多的点才能成为核心点。
  • min_samples 参数定义了核心点周围必须有的最少邻近点数。
  • labels 是 DBSCAN 分配给每个样本的簇标签。标记 -1 表示该点被认为是噪声点。

添加结果至原始数据框

beer['cluster_db'] = labels
beer.sort_values('cluster_db')
解释:
  • 将 DBSCAN 的聚类结果添加到原始数据框 beer 中的新列 cluster_db
  • 使用 sort_values 方法按簇标签排序,这一步虽然不会改变数据框的内容(因为默认情况下它返回排序后的副本),但可以方便查看输出。

对聚类结果进行评分

score = metrics.silhouette_score(X, beer.cluster_db)
print(score)
解释:
  • 使用 metrics.silhouette_score 计算轮廓系数得分,该得分越高表示簇内的数据点越相似,簇间差异越大。
  • 输出得分以评估聚类的效果。

4.总结

通过上述步骤,我们完成了 DBSCAN 聚类分析的过程。与 K-means 相比,DBSCAN 具有以下优势:

  • 灵活性:DBSCAN 不需要预先知道簇的数量。
  • 噪声处理:DBSCAN 能够有效地识别和排除噪声点。
  • 任意形状簇:DBSCAN 能够发现任意形状的簇。

在本实验中,我们不仅实现了 DBSCAN 算法,还通过轮廓系数得分来评估聚类结果的质量。DBSCAN 的这些特性使其在处理复杂数据集时特别有用,尤其是在需要识别噪声和发现不规则簇形状的情况下。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词