欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 会展 > 每日一道算法题

每日一道算法题

2025/1/29 16:26:16 来源:https://blog.csdn.net/lxl12138/article/details/145383625  浏览:    关键词:每日一道算法题

题目:最长递增子序列的个数

给定一个未排序的整数数组,找到最长递增子序列的个数。

示例 1

  • 输入nums = [1,3,5,4,7]
  • 输出2
  • 解释:有两个最长递增子序列,分别是 [1,3,4,7] 和 [1,3,5,7] 。

示例 2

  • 输入nums = [2,2,2,2,2]
  • 输出5
  • 解释:最长递增子序列的长度是 1,并且存在 5 个长度为 1 的递增子序列,因此输出 5。

提示

  • 1 <= nums.length <= 2000
  • -10^6 <= nums[i] <= 10^6

解题思路提示

  1. 状态定义
    • 可以使用两个数组,dp 数组用来记录以每个位置结尾的最长递增子序列的长度,count 数组用来记录以每个位置结尾的最长递增子序列的个数。
  2. 状态转移方程
    • 对于每个位置 i ,遍历 0 到 i - 1 的位置 j ,如果 nums[i] > nums[j] ,则可以更新 dp[i] 和 count[i] 。
    • 更新 dp[i] :dp[i] = max(dp[i], dp[j] + 1) 。
    • 更新 count[i] :如果 dp[i] == dp[j] + 1 ,则 count[i] += count[j] ;如果 dp[i] < dp[j] + 1 ,则 count[i] = count[j] 。
  3. 最终结果
    • 遍历 dp 数组找到最长递增子序列的长度 maxLen 。
    • 再次遍历 count 数组,将所有对应 dp 值为 maxLen 的 count 值累加起来,得到最长递增子序列的个数.

 代码实现(Java):

/*** ClassName:LongestIncreasingSubsequenceCount** @Author 爱掉头发的小李* @Create 2025/1/26 15:46* @Version 1.0*/
public class LongestIncreasingSubsequenceCount {public int findNumberOfLIS(int[] nums) {// 如果数组为空,直接返回 0if (nums == null || nums.length == 0) {return 0;}int n = nums.length;// dp 数组用于记录以每个位置结尾的最长递增子序列的长度,初始值都为 1int[] dp = new int[n];// count 数组用于记录以每个位置结尾的最长递增子序列的个数,初始值都为 1int[] count = new int[n];// 初始化 dp 数组和 count 数组for (int i = 0; i < n; i++) {dp[i] = 1;count[i] = 1;}// 填充 dp 数组和 count 数组for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) {// 如果当前元素可以接在前面的元素后面形成更长的递增子序列if (dp[j] + 1 > dp[i]) {dp[i] = dp[j] + 1;count[i] = count[j];} else if (dp[j] + 1 == dp[i]) {// 如果长度相同,累加个数count[i] += count[j];}}}}// 找到最长递增子序列的长度int maxLength = 0;for (int len : dp) {maxLength = Math.max(maxLength, len);}// 计算最长递增子序列的个数int result = 0;for (int i = 0; i < n; i++) {if (dp[i] == maxLength) {result += count[i];}}return result;}public static void main(String[] args) {LongestIncreasingSubsequenceCount solution = new LongestIncreasingSubsequenceCount();int[] nums = {1, 3, 5, 4, 7};System.out.println(solution.findNumberOfLIS(nums));}
}

代码说明:

  1. 初始化部分

    • 首先检查输入数组 nums 是否为空或长度为 0,如果是则直接返回 0。
    • 初始化 dp 数组,将每个元素初始化为 1,因为每个元素自身可以构成一个长度为 1 的递增子序列。
    • 初始化 count 数组,同样将每个元素初始化为 1,表示以该元素结尾的长度为 1 的递增子序列的个数为 1。
  2. 双重循环填充 dp 和 count 数组

    • 外层循环遍历数组中的每个元素,从索引 1 开始。
    • 内层循环遍历当前元素之前的所有元素。
    • 如果当前元素 nums[i] 大于 nums[j],说明可以将 nums[i] 接在以 nums[j] 结尾的递增子序列后面:
      • 如果 dp[j] + 1 大于 dp[i],则更新 dp[i] 为 dp[j] + 1,并将 count[i] 更新为 count[j],因为找到了更长的递增子序列。
      • 如果 dp[j] + 1 等于 dp[i],说明找到了同样长度的递增子序列,将 count[i] 加上 count[j]
  3. 计算最长递增子序列的长度

    • 遍历 dp 数组,找到其中的最大值 maxLength,即为最长递增子序列的长度。
  4. 计算最长递增子序列的个数

    • 再次遍历 dp 数组,将所有 dp[i] 等于 maxLength 的 count[i] 累加起来,得到最长递增子序列的个数。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com