欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 国际 > 12 向量结构模块(vector.rs)

12 向量结构模块(vector.rs)

2025/2/3 5:35:53 来源:https://blog.csdn.net/weixin_43219667/article/details/145423753  浏览:    关键词:12 向量结构模块(vector.rs)

一vector.rs源码

// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.use super::UnknownUnit;
use crate::approxeq::ApproxEq;
use crate::approxord::{max, min};
use crate::length::Length;
use crate::num::*;
use crate::point::{point2, point3, Point2D, Point3D};
use crate::scale::Scale;
use crate::size::{size2, size3, Size2D, Size3D};
use crate::transform2d::Transform2D;
use crate::transform3d::Transform3D;
use crate::trig::Trig;
use crate::Angle;
use core::cmp::{Eq, PartialEq};
use core::fmt;
use core::hash::Hash;
use core::iter::Sum;
use core::marker::PhantomData;
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
#[cfg(feature = "mint")]
use mint;
use num_traits::real::Real;
use num_traits::{Float, NumCast, Signed};
#[cfg(feature = "serde")]
use serde;#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};/// A 2d Vector tagged with a unit.
#[repr(C)]
pub struct Vector2D<T, U> {/// The `x` (traditionally, horizontal) coordinate.pub x: T,/// The `y` (traditionally, vertical) coordinate.pub y: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}mint_vec!(Vector2D[x, y] = Vector2);impl<T: Copy, U> Copy for Vector2D<T, U> {}impl<T: Clone, U> Clone for Vector2D<T, U> {fn clone(&self) -> Self {Vector2D {x: self.x.clone(),y: self.y.clone(),_unit: PhantomData,}}
}#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Vector2D<T, U>
whereT: serde::Deserialize<'de>,
{fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>whereD: serde::Deserializer<'de>,{let (x, y) = serde::Deserialize::deserialize(deserializer)?;Ok(Vector2D {x,y,_unit: PhantomData,})}
}#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Vector2D<T, U>
whereT: serde::Serialize,
{fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>whereS: serde::Serializer,{(&self.x, &self.y).serialize(serializer)}
}#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector2D<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (x, y) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Vector2D {x,y,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Vector2D<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Vector2D<T, U> {}impl<T: Eq, U> Eq for Vector2D<T, U> {}impl<T: PartialEq, U> PartialEq for Vector2D<T, U> {fn eq(&self, other: &Self) -> bool {self.x == other.x && self.y == other.y}
}impl<T: Hash, U> Hash for Vector2D<T, U> {fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.x.hash(h);self.y.hash(h);}
}impl<T: Zero, U> Zero for Vector2D<T, U> {/// Constructor, setting all components to zero.#[inline]fn zero() -> Self {Vector2D::new(Zero::zero(), Zero::zero())}
}impl<T: fmt::Debug, U> fmt::Debug for Vector2D<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {f.debug_tuple("").field(&self.x).field(&self.y).finish()}
}impl<T: Default, U> Default for Vector2D<T, U> {fn default() -> Self {Vector2D::new(Default::default(), Default::default())}
}impl<T, U> Vector2D<T, U> {/// Constructor, setting all components to zero.#[inline]pub fn zero() -> SelfwhereT: Zero,{Vector2D::new(Zero::zero(), Zero::zero())}/// Constructor, setting all components to one.#[inline]pub fn one() -> SelfwhereT: One,{Vector2D::new(One::one(), One::one())}/// Constructor taking scalar values directly.#[inline]pub const fn new(x: T, y: T) -> Self {Vector2D {x,y,_unit: PhantomData,}}/// Constructor setting all components to the same value.#[inline]pub fn splat(v: T) -> SelfwhereT: Clone,{Vector2D {x: v.clone(),y: v,_unit: PhantomData,}}/// Constructor taking angle and lengthpub fn from_angle_and_length(angle: Angle<T>, length: T) -> SelfwhereT: Trig + Mul<Output = T> + Copy,{vec2(length * angle.radians.cos(), length * angle.radians.sin())}/// Constructor taking properly  Lengths instead of scalar values.#[inline]pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self {vec2(x.0, y.0)}/// Tag a unit-less value with units.#[inline]pub fn from_untyped(p: Vector2D<T, UnknownUnit>) -> Self {vec2(p.x, p.y)}/// Apply the function `f` to each component of this vector.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::default::Vector2D;////// let p = Vector2D::<u32>::new(5, 11);/// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector2D::new(0, 1));/// ```#[inline]pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Vector2D<V, U> {vec2(f(self.x), f(self.y))}/// Apply the function `f` to each pair of components of this point and `rhs`.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::default::Vector2D;////// let a: Vector2D<u8> = Vector2D::new(50, 200);/// let b: Vector2D<u8> = Vector2D::new(100, 100);/// assert_eq!(a.zip(b, u8::saturating_add), Vector2D::new(150, 255));/// ```#[inline]pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector2D<V, U> {vec2(f(self.x, rhs.x), f(self.y, rhs.y))}/// Computes the vector with absolute values of each component.////// # Example////// ```rust/// # use std::{i32, f32};/// # use euclid::vec2;/// enum U {}////// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2));////// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs();/// assert!(vec.x.is_nan());/// assert_eq!(vec.y, f32::MAX);/// ```////// # Panics////// The behavior for each component follows the scalar type's implementation of/// `num_traits::Signed::abs`.pub fn abs(self) -> SelfwhereT: Signed,{vec2(self.x.abs(), self.y.abs())}/// Dot product.#[inline]pub fn dot(self, other: Self) -> TwhereT: Add<Output = T> + Mul<Output = T>,{self.x * other.x + self.y * other.y}/// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0].#[inline]pub fn cross(self, other: Self) -> TwhereT: Sub<Output = T> + Mul<Output = T>,{self.x * other.y - self.y * other.x}/// Returns the component-wise multiplication of the two vectors.#[inline]pub fn component_mul(self, other: Self) -> SelfwhereT: Mul<Output = T>,{vec2(self.x * other.x, self.y * other.y)}/// Returns the component-wise division of the two vectors.#[inline]pub fn component_div(self, other: Self) -> SelfwhereT: Div<Output = T>,{vec2(self.x / other.x, self.y / other.y)}
}impl<T: Copy, U> Vector2D<T, U> {/// Create a 3d vector from this one, using the specified z value.#[inline]pub fn extend(self, z: T) -> Vector3D<T, U> {vec3(self.x, self.y, z)}/// Cast this vector into a point.////// Equivalent to adding this vector to the origin.#[inline]pub fn to_point(self) -> Point2D<T, U> {Point2D {x: self.x,y: self.y,_unit: PhantomData,}}/// Swap x and y.#[inline]pub fn yx(self) -> Self {vec2(self.y, self.x)}/// Cast this vector into a size.#[inline]pub fn to_size(self) -> Size2D<T, U> {size2(self.x, self.y)}/// Drop the units, preserving only the numeric value.#[inline]pub fn to_untyped(self) -> Vector2D<T, UnknownUnit> {vec2(self.x, self.y)}/// Cast the unit.#[inline]pub fn cast_unit<V>(self) -> Vector2D<T, V> {vec2(self.x, self.y)}/// Cast into an array with x and y.#[inline]pub fn to_array(self) -> [T; 2] {[self.x, self.y]}/// Cast into a tuple with x and y.#[inline]pub fn to_tuple(self) -> (T, T) {(self.x, self.y)}/// Convert into a 3d vector with `z` coordinate equals to `T::zero()`.#[inline]pub fn to_3d(self) -> Vector3D<T, U>whereT: Zero,{vec3(self.x, self.y, Zero::zero())}/// Rounds each component to the nearest integer value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::vec2;/// enum Mm {}////// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0))/// ```#[inline]#[must_use]pub fn round(self) -> SelfwhereT: Round,{vec2(self.x.round(), self.y.round())}/// Rounds each component to the smallest integer equal or greater than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::vec2;/// enum Mm {}////// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0))/// ```#[inline]#[must_use]pub fn ceil(self) -> SelfwhereT: Ceil,{vec2(self.x.ceil(), self.y.ceil())}/// Rounds each component to the biggest integer equal or lower than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::vec2;/// enum Mm {}////// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0))/// ```#[inline]#[must_use]pub fn floor(self) -> SelfwhereT: Floor,{vec2(self.x.floor(), self.y.floor())}/// Returns the signed angle between this vector and the x axis./// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2`/// is `+y` axis.////// The returned angle is between -PI and PI.pub fn angle_from_x_axis(self) -> Angle<T>whereT: Trig,{Angle::radians(Trig::fast_atan2(self.y, self.x))}/// Creates translation by this vector in vector units.#[inline]pub fn to_transform(self) -> Transform2D<T, U, U>whereT: Zero + One,{Transform2D::translation(self.x, self.y)}
}impl<T, U> Vector2D<T, U>
whereT: Copy + Mul<T, Output = T> + Add<T, Output = T>,
{/// Returns the vector's length squared.#[inline]pub fn square_length(self) -> T {self.x * self.x + self.y * self.y}/// Returns this vector projected onto another one.////// Projecting onto a nil vector will cause a division by zero.#[inline]pub fn project_onto_vector(self, onto: Self) -> SelfwhereT: Sub<T, Output = T> + Div<T, Output = T>,{onto * (self.dot(onto) / onto.square_length())}/// Returns the signed angle between this vector and another vector.////// The returned angle is between -PI and PI.pub fn angle_to(self, other: Self) -> Angle<T>whereT: Sub<Output = T> + Trig,{Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other)))}
}impl<T: Float, U> Vector2D<T, U> {/// Return the normalized vector even if the length is larger than the max value of Float.#[inline]#[must_use]pub fn robust_normalize(self) -> Self {let length = self.length();if length.is_infinite() {let scaled = self / T::max_value();scaled / scaled.length()} else {self / length}}/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.x.is_finite() && self.y.is_finite()}
}impl<T: Real, U> Vector2D<T, U> {/// Returns the vector length.#[inline]pub fn length(self) -> T {self.square_length().sqrt()}/// Returns the vector with length of one unit.#[inline]#[must_use]pub fn normalize(self) -> Self {self / self.length()}/// Returns the vector with length of one unit.////// Unlike [`Vector2D::normalize`], this returns `None` in the case that the/// length of the vector is zero.#[inline]#[must_use]pub fn try_normalize(self) -> Option<Self> {let len = self.length();if len == T::zero() {None} else {Some(self / len)}}/// Return this vector scaled to fit the provided length.#[inline]pub fn with_length(self, length: T) -> Self {self.normalize() * length}/// Return this vector capped to a maximum length.#[inline]pub fn with_max_length(self, max_length: T) -> Self {let square_length = self.square_length();if square_length > max_length * max_length {return self * (max_length / square_length.sqrt());}self}/// Return this vector with a minimum length applied.#[inline]pub fn with_min_length(self, min_length: T) -> Self {let square_length = self.square_length();if square_length < min_length * min_length {return self * (min_length / square_length.sqrt());}self}/// Return this vector with minimum and maximum lengths applied.#[inline]pub fn clamp_length(self, min: T, max: T) -> Self {debug_assert!(min <= max);self.with_min_length(min).with_max_length(max)}
}impl<T, U> Vector2D<T, U>
whereT: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{/// Linearly interpolate each component between this vector and another vector.////// # Example////// ```rust/// use euclid::vec2;/// use euclid::default::Vector2D;////// let from: Vector2D<_> = vec2(0.0, 10.0);/// let to:  Vector2D<_> = vec2(8.0, -4.0);////// assert_eq!(from.lerp(to, -1.0), vec2(-8.0,  24.0));/// assert_eq!(from.lerp(to,  0.0), vec2( 0.0,  10.0));/// assert_eq!(from.lerp(to,  0.5), vec2( 4.0,   3.0));/// assert_eq!(from.lerp(to,  1.0), vec2( 8.0,  -4.0));/// assert_eq!(from.lerp(to,  2.0), vec2(16.0, -18.0));/// ```#[inline]pub fn lerp(self, other: Self, t: T) -> Self {let one_t = T::one() - t;self * one_t + other * t}/// Returns a reflection vector using an incident ray and a surface normal.#[inline]pub fn reflect(self, normal: Self) -> Self {let two = T::one() + T::one();self - normal * two * self.dot(normal)}
}impl<T: PartialOrd, U> Vector2D<T, U> {/// Returns the vector each component of which are minimum of this vector and another.#[inline]pub fn min(self, other: Self) -> Self {vec2(min(self.x, other.x), min(self.y, other.y))}/// Returns the vector each component of which are maximum of this vector and another.#[inline]pub fn max(self, other: Self) -> Self {vec2(max(self.x, other.x), max(self.y, other.y))}/// Returns the vector each component of which is clamped by corresponding/// components of `start` and `end`.////// Shortcut for `self.max(start).min(end)`.#[inline]pub fn clamp(self, start: Self, end: Self) -> SelfwhereT: Copy,{self.max(start).min(end)}/// Returns vector with results of "greater than" operation on each component.#[inline]pub fn greater_than(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.x > other.x,y: self.y > other.y,}}/// Returns vector with results of "lower than" operation on each component.#[inline]pub fn lower_than(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.x < other.x,y: self.y < other.y,}}
}impl<T: PartialEq, U> Vector2D<T, U> {/// Returns vector with results of "equal" operation on each component.#[inline]pub fn equal(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.x == other.x,y: self.y == other.y,}}/// Returns vector with results of "not equal" operation on each component.#[inline]pub fn not_equal(self, other: Self) -> BoolVector2D {BoolVector2D {x: self.x != other.x,y: self.y != other.y,}}
}impl<T: NumCast + Copy, U> Vector2D<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating vector to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.#[inline]pub fn cast<NewT: NumCast>(self) -> Vector2D<NewT, U> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating vector to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.pub fn try_cast<NewT: NumCast>(self) -> Option<Vector2D<NewT, U>> {match (NumCast::from(self.x), NumCast::from(self.y)) {(Some(x), Some(y)) => Some(Vector2D::new(x, y)),_ => None,}}// Convenience functions for common casts./// Cast into an `f32` vector.#[inline]pub fn to_f32(self) -> Vector2D<f32, U> {self.cast()}/// Cast into an `f64` vector.#[inline]pub fn to_f64(self) -> Vector2D<f64, U> {self.cast()}/// Cast into an `usize` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_usize(self) -> Vector2D<usize, U> {self.cast()}/// Cast into an `isize` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_isize(self) -> Vector2D<isize, U> {self.cast()}/// Cast into an `u32` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u32(self) -> Vector2D<u32, U> {self.cast()}/// Cast into an i32 vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i32(self) -> Vector2D<i32, U> {self.cast()}/// Cast into an i64 vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i64(self) -> Vector2D<i64, U> {self.cast()}
}impl<T: Neg, U> Neg for Vector2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn neg(self) -> Self::Output {vec2(-self.x, -self.y)}
}impl<T: Add, U> Add for Vector2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn add(self, other: Self) -> Self::Output {Vector2D::new(self.x + other.x, self.y + other.y)}
}impl<T: Add + Copy, U> Add<&Self> for Vector2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn add(self, other: &Self) -> Self::Output {Vector2D::new(self.x + other.x, self.y + other.y)}
}impl<T: Add<Output = T> + Zero, U> Sum for Vector2D<T, U> {fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector2D<T, U> {fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector2D<T, U> {#[inline]fn add_assign(&mut self, other: Self) {*self = *self + other;}
}impl<T: Sub, U> Sub for Vector2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn sub(self, other: Self) -> Self::Output {vec2(self.x - other.x, self.y - other.y)}
}impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Vector2D<T, U> {#[inline]fn sub_assign(&mut self, other: Self) {*self = *self - other;}
}impl<T: Copy + Mul, U> Mul<T> for Vector2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn mul(self, scale: T) -> Self::Output {vec2(self.x * scale, self.y * scale)}
}impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector2D<T, U> {#[inline]fn mul_assign(&mut self, scale: T) {*self = *self * scale;}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector2D<T, U1> {type Output = Vector2D<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {vec2(self.x * scale.0, self.y * scale.0)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector2D<T, U> {#[inline]fn mul_assign(&mut self, scale: Scale<T, U, U>) {self.x *= scale.0;self.y *= scale.0;}
}impl<T: Copy + Div, U> Div<T> for Vector2D<T, U> {type Output = Vector2D<T::Output, U>;#[inline]fn div(self, scale: T) -> Self::Output {vec2(self.x / scale, self.y / scale)}
}impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector2D<T, U> {#[inline]fn div_assign(&mut self, scale: T) {*self = *self / scale;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector2D<T, U2> {type Output = Vector2D<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {vec2(self.x / scale.0, self.y / scale.0)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector2D<T, U> {#[inline]fn div_assign(&mut self, scale: Scale<T, U, U>) {self.x /= scale.0;self.y /= scale.0;}
}impl<T: Round, U> Round for Vector2D<T, U> {/// See [`Vector2D::round`].#[inline]fn round(self) -> Self {self.round()}
}impl<T: Ceil, U> Ceil for Vector2D<T, U> {/// See [`Vector2D::ceil`].#[inline]fn ceil(self) -> Self {self.ceil()}
}impl<T: Floor, U> Floor for Vector2D<T, U> {/// See [`Vector2D::floor`].#[inline]fn floor(self) -> Self {self.floor()}
}impl<T: ApproxEq<T>, U> ApproxEq<Vector2D<T, U>> for Vector2D<T, U> {#[inline]fn approx_epsilon() -> Self {vec2(T::approx_epsilon(), T::approx_epsilon())}#[inline]fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y)}
}impl<T, U> From<Vector2D<T, U>> for [T; 2] {fn from(v: Vector2D<T, U>) -> Self {[v.x, v.y]}
}impl<T, U> From<[T; 2]> for Vector2D<T, U> {fn from([x, y]: [T; 2]) -> Self {vec2(x, y)}
}impl<T, U> From<Vector2D<T, U>> for (T, T) {fn from(v: Vector2D<T, U>) -> Self {(v.x, v.y)}
}impl<T, U> From<(T, T)> for Vector2D<T, U> {fn from(tuple: (T, T)) -> Self {vec2(tuple.0, tuple.1)}
}impl<T, U> From<Size2D<T, U>> for Vector2D<T, U> {fn from(s: Size2D<T, U>) -> Self {vec2(s.width, s.height)}
}/// A 3d Vector tagged with a unit.
#[repr(C)]
pub struct Vector3D<T, U> {/// The `x` (traditionally, horizontal) coordinate.pub x: T,/// The `y` (traditionally, vertical) coordinate.pub y: T,/// The `z` (traditionally, depth) coordinate.pub z: T,#[doc(hidden)]pub _unit: PhantomData<U>,
}mint_vec!(Vector3D[x, y, z] = Vector3);impl<T: Copy, U> Copy for Vector3D<T, U> {}impl<T: Clone, U> Clone for Vector3D<T, U> {fn clone(&self) -> Self {Vector3D {x: self.x.clone(),y: self.y.clone(),z: self.z.clone(),_unit: PhantomData,}}
}#[cfg(feature = "serde")]
impl<'de, T, U> serde::Deserialize<'de> for Vector3D<T, U>
whereT: serde::Deserialize<'de>,
{fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>whereD: serde::Deserializer<'de>,{let (x, y, z) = serde::Deserialize::deserialize(deserializer)?;Ok(Vector3D {x,y,z,_unit: PhantomData,})}
}#[cfg(feature = "serde")]
impl<T, U> serde::Serialize for Vector3D<T, U>
whereT: serde::Serialize,
{fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>whereS: serde::Serializer,{(&self.x, &self.y, &self.z).serialize(serializer)}
}#[cfg(feature = "arbitrary")]
impl<'a, T, U> arbitrary::Arbitrary<'a> for Vector3D<T, U>
whereT: arbitrary::Arbitrary<'a>,
{fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {let (x, y, z) = arbitrary::Arbitrary::arbitrary(u)?;Ok(Vector3D {x,y,z,_unit: PhantomData,})}
}#[cfg(feature = "bytemuck")]
unsafe impl<T: Zeroable, U> Zeroable for Vector3D<T, U> {}#[cfg(feature = "bytemuck")]
unsafe impl<T: Pod, U: 'static> Pod for Vector3D<T, U> {}impl<T: Eq, U> Eq for Vector3D<T, U> {}impl<T: PartialEq, U> PartialEq for Vector3D<T, U> {fn eq(&self, other: &Self) -> bool {self.x == other.x && self.y == other.y && self.z == other.z}
}impl<T: Hash, U> Hash for Vector3D<T, U> {fn hash<H: core::hash::Hasher>(&self, h: &mut H) {self.x.hash(h);self.y.hash(h);self.z.hash(h);}
}impl<T: Zero, U> Zero for Vector3D<T, U> {/// Constructor, setting all components to zero.#[inline]fn zero() -> Self {vec3(Zero::zero(), Zero::zero(), Zero::zero())}
}impl<T: fmt::Debug, U> fmt::Debug for Vector3D<T, U> {fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {f.debug_tuple("").field(&self.x).field(&self.y).field(&self.z).finish()}
}impl<T: Default, U> Default for Vector3D<T, U> {fn default() -> Self {Vector3D::new(Default::default(), Default::default(), Default::default())}
}impl<T, U> Vector3D<T, U> {/// Constructor, setting all components to zero.#[inline]pub fn zero() -> SelfwhereT: Zero,{vec3(Zero::zero(), Zero::zero(), Zero::zero())}/// Constructor, setting all components to one.#[inline]pub fn one() -> SelfwhereT: One,{vec3(One::one(), One::one(), One::one())}/// Constructor taking scalar values directly.#[inline]pub const fn new(x: T, y: T, z: T) -> Self {Vector3D {x,y,z,_unit: PhantomData,}}/// Constructor setting all components to the same value.#[inline]pub fn splat(v: T) -> SelfwhereT: Clone,{Vector3D {x: v.clone(),y: v.clone(),z: v,_unit: PhantomData,}}/// Constructor taking properly  Lengths instead of scalar values.#[inline]pub fn from_lengths(x: Length<T, U>, y: Length<T, U>, z: Length<T, U>) -> Vector3D<T, U> {vec3(x.0, y.0, z.0)}/// Tag a unitless value with units.#[inline]pub fn from_untyped(p: Vector3D<T, UnknownUnit>) -> Self {vec3(p.x, p.y, p.z)}/// Apply the function `f` to each component of this vector.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::default::Vector3D;////// let p = Vector3D::<u32>::new(5, 11, 15);/// assert_eq!(p.map(|coord| coord.saturating_sub(10)), Vector3D::new(0, 1, 5));/// ```#[inline]pub fn map<V, F: FnMut(T) -> V>(self, mut f: F) -> Vector3D<V, U> {vec3(f(self.x), f(self.y), f(self.z))}/// Apply the function `f` to each pair of components of this point and `rhs`.////// # Example////// This may be used to perform unusual arithmetic which is not already offered as methods.////// ```/// use euclid::default::Vector3D;////// let a: Vector3D<u8> = Vector3D::new(50, 200, 10);/// let b: Vector3D<u8> = Vector3D::new(100, 100, 0);/// assert_eq!(a.zip(b, u8::saturating_add), Vector3D::new(150, 255, 10));/// ```#[inline]pub fn zip<V, F: FnMut(T, T) -> V>(self, rhs: Self, mut f: F) -> Vector3D<V, U> {vec3(f(self.x, rhs.x), f(self.y, rhs.y), f(self.z, rhs.z))}/// Computes the vector with absolute values of each component.////// # Example////// ```rust/// # use std::{i32, f32};/// # use euclid::vec3;/// enum U {}////// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2));////// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs();/// assert!(vec.x.is_nan());/// assert_eq!(vec.y, 0.0);/// assert_eq!(vec.z, f32::MAX);/// ```////// # Panics////// The behavior for each component follows the scalar type's implementation of/// `num_traits::Signed::abs`.pub fn abs(self) -> SelfwhereT: Signed,{vec3(self.x.abs(), self.y.abs(), self.z.abs())}/// Dot product.#[inline]pub fn dot(self, other: Self) -> TwhereT: Add<Output = T> + Mul<Output = T>,{self.x * other.x + self.y * other.y + self.z * other.z}
}impl<T: Copy, U> Vector3D<T, U> {/// Cross product.#[inline]pub fn cross(self, other: Self) -> SelfwhereT: Sub<Output = T> + Mul<Output = T>,{vec3(self.y * other.z - self.z * other.y,self.z * other.x - self.x * other.z,self.x * other.y - self.y * other.x,)}/// Returns the component-wise multiplication of the two vectors.#[inline]pub fn component_mul(self, other: Self) -> SelfwhereT: Mul<Output = T>,{vec3(self.x * other.x, self.y * other.y, self.z * other.z)}/// Returns the component-wise division of the two vectors.#[inline]pub fn component_div(self, other: Self) -> SelfwhereT: Div<Output = T>,{vec3(self.x / other.x, self.y / other.y, self.z / other.z)}/// Cast this vector into a point.////// Equivalent to adding this vector to the origin.#[inline]pub fn to_point(self) -> Point3D<T, U> {point3(self.x, self.y, self.z)}/// Returns a 2d vector using this vector's x and y coordinates#[inline]pub fn xy(self) -> Vector2D<T, U> {vec2(self.x, self.y)}/// Returns a 2d vector using this vector's x and z coordinates#[inline]pub fn xz(self) -> Vector2D<T, U> {vec2(self.x, self.z)}/// Returns a 2d vector using this vector's x and z coordinates#[inline]pub fn yz(self) -> Vector2D<T, U> {vec2(self.y, self.z)}/// Cast into an array with x, y and z.#[inline]pub fn to_array(self) -> [T; 3] {[self.x, self.y, self.z]}/// Cast into an array with x, y, z and 0.#[inline]pub fn to_array_4d(self) -> [T; 4]whereT: Zero,{[self.x, self.y, self.z, Zero::zero()]}/// Cast into a tuple with x, y and z.#[inline]pub fn to_tuple(self) -> (T, T, T) {(self.x, self.y, self.z)}/// Cast into a tuple with x, y, z and 0.#[inline]pub fn to_tuple_4d(self) -> (T, T, T, T)whereT: Zero,{(self.x, self.y, self.z, Zero::zero())}/// Drop the units, preserving only the numeric value.#[inline]pub fn to_untyped(self) -> Vector3D<T, UnknownUnit> {vec3(self.x, self.y, self.z)}/// Cast the unit.#[inline]pub fn cast_unit<V>(self) -> Vector3D<T, V> {vec3(self.x, self.y, self.z)}/// Convert into a 2d vector.#[inline]pub fn to_2d(self) -> Vector2D<T, U> {self.xy()}/// Rounds each component to the nearest integer value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::vec3;/// enum Mm {}////// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0))/// ```#[inline]#[must_use]pub fn round(self) -> SelfwhereT: Round,{vec3(self.x.round(), self.y.round(), self.z.round())}/// Rounds each component to the smallest integer equal or greater than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::vec3;/// enum Mm {}////// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0))/// ```#[inline]#[must_use]pub fn ceil(self) -> SelfwhereT: Ceil,{vec3(self.x.ceil(), self.y.ceil(), self.z.ceil())}/// Rounds each component to the biggest integer equal or lower than the original value.////// This behavior is preserved for negative values (unlike the basic cast).////// ```rust/// # use euclid::vec3;/// enum Mm {}////// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0))/// ```#[inline]#[must_use]pub fn floor(self) -> SelfwhereT: Floor,{vec3(self.x.floor(), self.y.floor(), self.z.floor())}/// Creates translation by this vector in vector units#[inline]pub fn to_transform(self) -> Transform3D<T, U, U>whereT: Zero + One,{Transform3D::translation(self.x, self.y, self.z)}
}impl<T, U> Vector3D<T, U>
whereT: Copy + Mul<T, Output = T> + Add<T, Output = T>,
{/// Returns the vector's length squared.#[inline]pub fn square_length(self) -> T {self.x * self.x + self.y * self.y + self.z * self.z}/// Returns this vector projected onto another one.////// Projecting onto a nil vector will cause a division by zero.#[inline]pub fn project_onto_vector(self, onto: Self) -> SelfwhereT: Sub<T, Output = T> + Div<T, Output = T>,{onto * (self.dot(onto) / onto.square_length())}
}impl<T: Float, U> Vector3D<T, U> {/// Return the normalized vector even if the length is larger than the max value of Float.#[inline]#[must_use]pub fn robust_normalize(self) -> Self {let length = self.length();if length.is_infinite() {let scaled = self / T::max_value();scaled / scaled.length()} else {self / length}}/// Returns `true` if all members are finite.#[inline]pub fn is_finite(self) -> bool {self.x.is_finite() && self.y.is_finite() && self.z.is_finite()}
}impl<T: Real, U> Vector3D<T, U> {/// Returns the positive angle between this vector and another vector.////// The returned angle is between 0 and PI.pub fn angle_to(self, other: Self) -> Angle<T>whereT: Trig,{Angle::radians(Trig::fast_atan2(self.cross(other).length(),self.dot(other),))}/// Returns the vector length.#[inline]pub fn length(self) -> T {self.square_length().sqrt()}/// Returns the vector with length of one unit#[inline]#[must_use]pub fn normalize(self) -> Self {self / self.length()}/// Returns the vector with length of one unit.////// Unlike [`Vector2D::normalize`], this returns `None` in the case that the/// length of the vector is zero.#[inline]#[must_use]pub fn try_normalize(self) -> Option<Self> {let len = self.length();if len == T::zero() {None} else {Some(self / len)}}/// Return this vector capped to a maximum length.#[inline]pub fn with_max_length(self, max_length: T) -> Self {let square_length = self.square_length();if square_length > max_length * max_length {return self * (max_length / square_length.sqrt());}self}/// Return this vector with a minimum length applied.#[inline]pub fn with_min_length(self, min_length: T) -> Self {let square_length = self.square_length();if square_length < min_length * min_length {return self * (min_length / square_length.sqrt());}self}/// Return this vector with minimum and maximum lengths applied.#[inline]pub fn clamp_length(self, min: T, max: T) -> Self {debug_assert!(min <= max);self.with_min_length(min).with_max_length(max)}
}impl<T, U> Vector3D<T, U>
whereT: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
{/// Linearly interpolate each component between this vector and another vector.////// # Example////// ```rust/// use euclid::vec3;/// use euclid::default::Vector3D;////// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0);/// let to:  Vector3D<_> = vec3(8.0, -4.0,  0.0);////// assert_eq!(from.lerp(to, -1.0), vec3(-8.0,  24.0, -2.0));/// assert_eq!(from.lerp(to,  0.0), vec3( 0.0,  10.0, -1.0));/// assert_eq!(from.lerp(to,  0.5), vec3( 4.0,   3.0, -0.5));/// assert_eq!(from.lerp(to,  1.0), vec3( 8.0,  -4.0,  0.0));/// assert_eq!(from.lerp(to,  2.0), vec3(16.0, -18.0,  1.0));/// ```#[inline]pub fn lerp(self, other: Self, t: T) -> Self {let one_t = T::one() - t;self * one_t + other * t}/// Returns a reflection vector using an incident ray and a surface normal.#[inline]pub fn reflect(self, normal: Self) -> Self {let two = T::one() + T::one();self - normal * two * self.dot(normal)}
}impl<T: PartialOrd, U> Vector3D<T, U> {/// Returns the vector each component of which are minimum of this vector and another.#[inline]pub fn min(self, other: Self) -> Self {vec3(min(self.x, other.x),min(self.y, other.y),min(self.z, other.z),)}/// Returns the vector each component of which are maximum of this vector and another.#[inline]pub fn max(self, other: Self) -> Self {vec3(max(self.x, other.x),max(self.y, other.y),max(self.z, other.z),)}/// Returns the vector each component of which is clamped by corresponding/// components of `start` and `end`.////// Shortcut for `self.max(start).min(end)`.#[inline]pub fn clamp(self, start: Self, end: Self) -> SelfwhereT: Copy,{self.max(start).min(end)}/// Returns vector with results of "greater than" operation on each component.#[inline]pub fn greater_than(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.x > other.x,y: self.y > other.y,z: self.z > other.z,}}/// Returns vector with results of "lower than" operation on each component.#[inline]pub fn lower_than(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.x < other.x,y: self.y < other.y,z: self.z < other.z,}}
}impl<T: PartialEq, U> Vector3D<T, U> {/// Returns vector with results of "equal" operation on each component.#[inline]pub fn equal(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.x == other.x,y: self.y == other.y,z: self.z == other.z,}}/// Returns vector with results of "not equal" operation on each component.#[inline]pub fn not_equal(self, other: Self) -> BoolVector3D {BoolVector3D {x: self.x != other.x,y: self.y != other.y,z: self.z != other.z,}}
}impl<T: NumCast + Copy, U> Vector3D<T, U> {/// Cast from one numeric representation to another, preserving the units.////// When casting from floating vector to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.#[inline]pub fn cast<NewT: NumCast>(self) -> Vector3D<NewT, U> {self.try_cast().unwrap()}/// Fallible cast from one numeric representation to another, preserving the units.////// When casting from floating vector to integer coordinates, the decimals are truncated/// as one would expect from a simple cast, but this behavior does not always make sense/// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting.pub fn try_cast<NewT: NumCast>(self) -> Option<Vector3D<NewT, U>> {match (NumCast::from(self.x),NumCast::from(self.y),NumCast::from(self.z),) {(Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)),_ => None,}}// Convenience functions for common casts./// Cast into an `f32` vector.#[inline]pub fn to_f32(self) -> Vector3D<f32, U> {self.cast()}/// Cast into an `f64` vector.#[inline]pub fn to_f64(self) -> Vector3D<f64, U> {self.cast()}/// Cast into an `usize` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_usize(self) -> Vector3D<usize, U> {self.cast()}/// Cast into an `isize` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_isize(self) -> Vector3D<isize, U> {self.cast()}/// Cast into an `u32` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_u32(self) -> Vector3D<u32, U> {self.cast()}/// Cast into an `i32` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i32(self) -> Vector3D<i32, U> {self.cast()}/// Cast into an `i64` vector, truncating decimals if any.////// When casting from floating vector vectors, it is worth considering whether/// to `round()`, `ceil()` or `floor()` before the cast in order to obtain/// the desired conversion behavior.#[inline]pub fn to_i64(self) -> Vector3D<i64, U> {self.cast()}
}impl<T: Neg, U> Neg for Vector3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn neg(self) -> Self::Output {vec3(-self.x, -self.y, -self.z)}
}impl<T: Add, U> Add for Vector3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn add(self, other: Self) -> Self::Output {vec3(self.x + other.x, self.y + other.y, self.z + other.z)}
}impl<'a, T: 'a + Add + Copy, U: 'a> Add<&Self> for Vector3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn add(self, other: &Self) -> Self::Output {vec3(self.x + other.x, self.y + other.y, self.z + other.z)}
}impl<T: Add<Output = T> + Zero, U> Sum for Vector3D<T, U> {fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<'a, T: 'a + Add<Output = T> + Copy + Zero, U: 'a> Sum<&'a Self> for Vector3D<T, U> {fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self {iter.fold(Self::zero(), Add::add)}
}impl<T: Copy + Add<T, Output = T>, U> AddAssign for Vector3D<T, U> {#[inline]fn add_assign(&mut self, other: Self) {*self = *self + other;}
}impl<T: Sub, U> Sub for Vector3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn sub(self, other: Self) -> Self::Output {vec3(self.x - other.x, self.y - other.y, self.z - other.z)}
}impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector3D<T, U>> for Vector3D<T, U> {#[inline]fn sub_assign(&mut self, other: Self) {*self = *self - other;}
}impl<T: Copy + Mul, U> Mul<T> for Vector3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn mul(self, scale: T) -> Self::Output {vec3(self.x * scale, self.y * scale, self.z * scale)}
}impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Vector3D<T, U> {#[inline]fn mul_assign(&mut self, scale: T) {*self = *self * scale;}
}impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Vector3D<T, U1> {type Output = Vector3D<T::Output, U2>;#[inline]fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {vec3(self.x * scale.0, self.y * scale.0, self.z * scale.0)}
}impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Vector3D<T, U> {#[inline]fn mul_assign(&mut self, scale: Scale<T, U, U>) {self.x *= scale.0;self.y *= scale.0;self.z *= scale.0;}
}impl<T: Copy + Div, U> Div<T> for Vector3D<T, U> {type Output = Vector3D<T::Output, U>;#[inline]fn div(self, scale: T) -> Self::Output {vec3(self.x / scale, self.y / scale, self.z / scale)}
}impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Vector3D<T, U> {#[inline]fn div_assign(&mut self, scale: T) {*self = *self / scale;}
}impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Vector3D<T, U2> {type Output = Vector3D<T::Output, U1>;#[inline]fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {vec3(self.x / scale.0, self.y / scale.0, self.z / scale.0)}
}impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Vector3D<T, U> {#[inline]fn div_assign(&mut self, scale: Scale<T, U, U>) {self.x /= scale.0;self.y /= scale.0;self.z /= scale.0;}
}impl<T: Round, U> Round for Vector3D<T, U> {/// See [`Vector3D::round`].#[inline]fn round(self) -> Self {self.round()}
}impl<T: Ceil, U> Ceil for Vector3D<T, U> {/// See [`Vector3D::ceil`].#[inline]fn ceil(self) -> Self {self.ceil()}
}impl<T: Floor, U> Floor for Vector3D<T, U> {/// See [`Vector3D::floor`].#[inline]fn floor(self) -> Self {self.floor()}
}impl<T: ApproxEq<T>, U> ApproxEq<Vector3D<T, U>> for Vector3D<T, U> {#[inline]fn approx_epsilon() -> Self {vec3(T::approx_epsilon(),T::approx_epsilon(),T::approx_epsilon(),)}#[inline]fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool {self.x.approx_eq_eps(&other.x, &eps.x)&& self.y.approx_eq_eps(&other.y, &eps.y)&& self.z.approx_eq_eps(&other.z, &eps.z)}
}impl<T, U> From<Vector3D<T, U>> for [T; 3] {fn from(v: Vector3D<T, U>) -> Self {[v.x, v.y, v.z]}
}impl<T, U> From<[T; 3]> for Vector3D<T, U> {fn from([x, y, z]: [T; 3]) -> Self {vec3(x, y, z)}
}impl<T, U> From<Vector3D<T, U>> for (T, T, T) {fn from(v: Vector3D<T, U>) -> Self {(v.x, v.y, v.z)}
}impl<T, U> From<(T, T, T)> for Vector3D<T, U> {fn from(tuple: (T, T, T)) -> Self {vec3(tuple.0, tuple.1, tuple.2)}
}/// A 2d vector of booleans, useful for component-wise logic operations.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct BoolVector2D {pub x: bool,pub y: bool,
}/// A 3d vector of booleans, useful for component-wise logic operations.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct BoolVector3D {pub x: bool,pub y: bool,pub z: bool,
}impl BoolVector2D {/// Returns `true` if all components are `true` and `false` otherwise.#[inline]pub fn all(self) -> bool {self.x && self.y}/// Returns `true` if any component are `true` and `false` otherwise.#[inline]pub fn any(self) -> bool {self.x || self.y}/// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`.#[inline]pub fn none(self) -> bool {!self.any()}/// Returns new vector with by-component AND operation applied.#[inline]pub fn and(self, other: Self) -> Self {BoolVector2D {x: self.x && other.x,y: self.y && other.y,}}/// Returns new vector with by-component OR operation applied.#[inline]pub fn or(self, other: Self) -> Self {BoolVector2D {x: self.x || other.x,y: self.y || other.y,}}/// Returns new vector with results of negation operation on each component.#[inline]pub fn not(self) -> Self {BoolVector2D {x: !self.x,y: !self.y,}}/// Returns point, each component of which or from `a`, or from `b` depending on truly value/// of corresponding vector component. `true` selects value from `a` and `false` from `b`.#[inline]pub fn select_point<T, U>(self, a: Point2D<T, U>, b: Point2D<T, U>) -> Point2D<T, U> {point2(if self.x { a.x } else { b.x },if self.y { a.y } else { b.y },)}/// Returns vector, each component of which or from `a`, or from `b` depending on truly value/// of corresponding vector component. `true` selects value from `a` and `false` from `b`.#[inline]pub fn select_vector<T, U>(self, a: Vector2D<T, U>, b: Vector2D<T, U>) -> Vector2D<T, U> {vec2(if self.x { a.x } else { b.x },if self.y { a.y } else { b.y },)}/// Returns size, each component of which or from `a`, or from `b` depending on truly value/// of corresponding vector component. `true` selects value from `a` and `false` from `b`.#[inline]pub fn select_size<T, U>(self, a: Size2D<T, U>, b: Size2D<T, U>) -> Size2D<T, U> {size2(if self.x { a.width } else { b.width },if self.y { a.height } else { b.height },)}
}impl BoolVector3D {/// Returns `true` if all components are `true` and `false` otherwise.#[inline]pub fn all(self) -> bool {self.x && self.y && self.z}/// Returns `true` if any component are `true` and `false` otherwise.#[inline]pub fn any(self) -> bool {self.x || self.y || self.z}/// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`.#[inline]pub fn none(self) -> bool {!self.any()}/// Returns new vector with by-component AND operation applied.#[inline]pub fn and(self, other: Self) -> Self {BoolVector3D {x: self.x && other.x,y: self.y && other.y,z: self.z && other.z,}}/// Returns new vector with by-component OR operation applied.#[inline]pub fn or(self, other: Self) -> Self {BoolVector3D {x: self.x || other.x,y: self.y || other.y,z: self.z || other.z,}}/// Returns new vector with results of negation operation on each component.#[inline]pub fn not(self) -> Self {BoolVector3D {x: !self.x,y: !self.y,z: !self.z,}}/// Returns point, each component of which or from `a`, or from `b` depending on truly value/// of corresponding vector component. `true` selects value from `a` and `false` from `b`.#[inline]pub fn select_point<T, U>(self, a: Point3D<T, U>, b: Point3D<T, U>) -> Point3D<T, U> {point3(if self.x { a.x } else { b.x },if self.y { a.y } else { b.y },if self.z { a.z } else { b.z },)}/// Returns vector, each component of which or from `a`, or from `b` depending on truly value/// of corresponding vector component. `true` selects value from `a` and `false` from `b`.#[inline]pub fn select_vector<T, U>(self, a: Vector3D<T, U>, b: Vector3D<T, U>) -> Vector3D<T, U> {vec3(if self.x { a.x } else { b.x },if self.y { a.y } else { b.y },if self.z { a.z } else { b.z },)}/// Returns size, each component of which or from `a`, or from `b` depending on truly value/// of corresponding vector component. `true` selects value from `a` and `false` from `b`.#[inline]#[must_use]pub fn select_size<T, U>(self, a: Size3D<T, U>, b: Size3D<T, U>) -> Size3D<T, U> {size3(if self.x { a.width } else { b.width },if self.y { a.height } else { b.height },if self.z { a.depth } else { b.depth },)}/// Returns a 2d vector using this vector's x and y coordinates.#[inline]pub fn xy(self) -> BoolVector2D {BoolVector2D {x: self.x,y: self.y,}}/// Returns a 2d vector using this vector's x and z coordinates.#[inline]pub fn xz(self) -> BoolVector2D {BoolVector2D {x: self.x,y: self.z,}}/// Returns a 2d vector using this vector's y and z coordinates.#[inline]pub fn yz(self) -> BoolVector2D {BoolVector2D {x: self.y,y: self.z,}}
}#[cfg(feature = "arbitrary")]
impl<'a> arbitrary::Arbitrary<'a> for BoolVector2D {fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {Ok(BoolVector2D {x: arbitrary::Arbitrary::arbitrary(u)?,y: arbitrary::Arbitrary::arbitrary(u)?,})}
}#[cfg(feature = "arbitrary")]
impl<'a> arbitrary::Arbitrary<'a> for BoolVector3D {fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {Ok(BoolVector3D {x: arbitrary::Arbitrary::arbitrary(u)?,y: arbitrary::Arbitrary::arbitrary(u)?,z: arbitrary::Arbitrary::arbitrary(u)?,})}
}/// Convenience constructor.
#[inline]
pub const fn vec2<T, U>(x: T, y: T) -> Vector2D<T, U> {Vector2D {x,y,_unit: PhantomData,}
}/// Convenience constructor.
#[inline]
pub const fn vec3<T, U>(x: T, y: T, z: T) -> Vector3D<T, U> {Vector3D {x,y,z,_unit: PhantomData,}
}/// Shorthand for `BoolVector2D { x, y }`.
#[inline]
pub const fn bvec2(x: bool, y: bool) -> BoolVector2D {BoolVector2D { x, y }
}/// Shorthand for `BoolVector3D { x, y, z }`.
#[inline]
pub const fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D {BoolVector3D { x, y, z }
}#[cfg(test)]
mod vector2d {use crate::scale::Scale;use crate::{default, vec2};#[cfg(feature = "mint")]use mint;type Vec2 = default::Vector2D<f32>;#[test]pub fn test_scalar_mul() {let p1: Vec2 = vec2(3.0, 5.0);let result = p1 * 5.0;assert_eq!(result, Vec2::new(15.0, 25.0));}#[test]pub fn test_dot() {let p1: Vec2 = vec2(2.0, 7.0);let p2: Vec2 = vec2(13.0, 11.0);assert_eq!(p1.dot(p2), 103.0);}#[test]pub fn test_cross() {let p1: Vec2 = vec2(4.0, 7.0);let p2: Vec2 = vec2(13.0, 8.0);let r = p1.cross(p2);assert_eq!(r, -59.0);}#[test]pub fn test_normalize() {use std::f32;let p0: Vec2 = Vec2::zero();let p1: Vec2 = vec2(4.0, 0.0);let p2: Vec2 = vec2(3.0, -4.0);assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan());assert_eq!(p1.normalize(), vec2(1.0, 0.0));assert_eq!(p2.normalize(), vec2(0.6, -0.8));let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX);assert_ne!(p3.normalize(),vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()));assert_eq!(p3.robust_normalize(),vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()));let p4: Vec2 = Vec2::zero();assert!(p4.try_normalize().is_none());let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE);assert!(p5.try_normalize().is_none());let p6: Vec2 = vec2(4.0, 0.0);let p7: Vec2 = vec2(3.0, -4.0);assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0));assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8));}#[test]pub fn test_min() {let p1: Vec2 = vec2(1.0, 3.0);let p2: Vec2 = vec2(2.0, 2.0);let result = p1.min(p2);assert_eq!(result, vec2(1.0, 2.0));}#[test]pub fn test_max() {let p1: Vec2 = vec2(1.0, 3.0);let p2: Vec2 = vec2(2.0, 2.0);let result = p1.max(p2);assert_eq!(result, vec2(2.0, 3.0));}#[test]pub fn test_angle_from_x_axis() {use crate::approxeq::ApproxEq;use core::f32::consts::FRAC_PI_2;let right: Vec2 = vec2(10.0, 0.0);let down: Vec2 = vec2(0.0, 4.0);let up: Vec2 = vec2(0.0, -1.0);assert!(right.angle_from_x_axis().get().approx_eq(&0.0));assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2));assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2));}#[test]pub fn test_angle_to() {use crate::approxeq::ApproxEq;use core::f32::consts::FRAC_PI_2;let right: Vec2 = vec2(10.0, 0.0);let right2: Vec2 = vec2(1.0, 0.0);let up: Vec2 = vec2(0.0, -1.0);let up_left: Vec2 = vec2(-1.0, -1.0);assert!(right.angle_to(right2).get().approx_eq(&0.0));assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2));assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2));assert!(up_left.angle_to(up).get().approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005));}#[test]pub fn test_with_max_length() {use crate::approxeq::ApproxEq;let v1: Vec2 = vec2(0.5, 0.5);let v2: Vec2 = vec2(1.0, 0.0);let v3: Vec2 = vec2(0.1, 0.2);let v4: Vec2 = vec2(2.0, -2.0);let v5: Vec2 = vec2(1.0, 2.0);let v6: Vec2 = vec2(-1.0, 3.0);assert_eq!(v1.with_max_length(1.0), v1);assert_eq!(v2.with_max_length(1.0), v2);assert_eq!(v3.with_max_length(1.0), v3);assert_eq!(v4.with_max_length(10.0), v4);assert_eq!(v5.with_max_length(10.0), v5);assert_eq!(v6.with_max_length(10.0), v6);let v4_clamped = v4.with_max_length(1.0);assert!(v4_clamped.length().approx_eq(&1.0));assert!(v4_clamped.normalize().approx_eq(&v4.normalize()));let v5_clamped = v5.with_max_length(1.5);assert!(v5_clamped.length().approx_eq(&1.5));assert!(v5_clamped.normalize().approx_eq(&v5.normalize()));let v6_clamped = v6.with_max_length(2.5);assert!(v6_clamped.length().approx_eq(&2.5));assert!(v6_clamped.normalize().approx_eq(&v6.normalize()));}#[test]pub fn test_project_onto_vector() {use crate::approxeq::ApproxEq;let v1: Vec2 = vec2(1.0, 2.0);let x: Vec2 = vec2(1.0, 0.0);let y: Vec2 = vec2(0.0, 1.0);assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0)));assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0)));assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0)));assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0)));assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1));assert!(v1.project_onto_vector(-v1).approx_eq(&v1));}#[cfg(feature = "mint")]#[test]pub fn test_mint() {let v1 = Vec2::new(1.0, 3.0);let vm: mint::Vector2<_> = v1.into();let v2 = Vec2::from(vm);assert_eq!(v1, v2);}pub enum Mm {}pub enum Cm {}pub type Vector2DMm<T> = super::Vector2D<T, Mm>;pub type Vector2DCm<T> = super::Vector2D<T, Cm>;#[test]pub fn test_add() {let p1 = Vector2DMm::new(1.0, 2.0);let p2 = Vector2DMm::new(3.0, 4.0);assert_eq!(p1 + p2, vec2(4.0, 6.0));assert_eq!(p1 + &p2, vec2(4.0, 6.0));}#[test]pub fn test_sum() {let vecs = [Vector2DMm::new(1.0, 2.0),Vector2DMm::new(3.0, 4.0),Vector2DMm::new(5.0, 6.0),];let sum = Vector2DMm::new(9.0, 12.0);assert_eq!(vecs.iter().sum::<Vector2DMm<_>>(), sum);}#[test]pub fn test_add_assign() {let mut p1 = Vector2DMm::new(1.0, 2.0);p1 += vec2(3.0, 4.0);assert_eq!(p1, vec2(4.0, 6.0));}#[test]pub fn test_typed_scalar_mul() {let p1 = Vector2DMm::new(1.0, 2.0);let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1);let result: Vector2DCm<f32> = p1 * cm_per_mm;assert_eq!(result, vec2(0.1, 0.2));}#[test]pub fn test_swizzling() {let p: default::Vector2D<i32> = vec2(1, 2);assert_eq!(p.yx(), vec2(2, 1));}#[test]pub fn test_reflect() {use crate::approxeq::ApproxEq;let a: Vec2 = vec2(1.0, 3.0);let n1: Vec2 = vec2(0.0, -1.0);let n2: Vec2 = vec2(1.0, -1.0).normalize();assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0)));assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0)));}
}#[cfg(test)]
mod vector3d {use crate::scale::Scale;use crate::{default, vec2, vec3};#[cfg(feature = "mint")]use mint;type Vec3 = default::Vector3D<f32>;#[test]pub fn test_add() {let p1 = Vec3::new(1.0, 2.0, 3.0);let p2 = Vec3::new(4.0, 5.0, 6.0);assert_eq!(p1 + p2, vec3(5.0, 7.0, 9.0));assert_eq!(p1 + &p2, vec3(5.0, 7.0, 9.0));}#[test]pub fn test_sum() {let vecs = [Vec3::new(1.0, 2.0, 3.0),Vec3::new(4.0, 5.0, 6.0),Vec3::new(7.0, 8.0, 9.0),];let sum = Vec3::new(12.0, 15.0, 18.0);assert_eq!(vecs.iter().sum::<Vec3>(), sum);}#[test]pub fn test_dot() {let p1: Vec3 = vec3(7.0, 21.0, 32.0);let p2: Vec3 = vec3(43.0, 5.0, 16.0);assert_eq!(p1.dot(p2), 918.0);}#[test]pub fn test_cross() {let p1: Vec3 = vec3(4.0, 7.0, 9.0);let p2: Vec3 = vec3(13.0, 8.0, 3.0);let p3 = p1.cross(p2);assert_eq!(p3, vec3(-51.0, 105.0, -59.0));}#[test]pub fn test_normalize() {use std::f32;let p0: Vec3 = Vec3::zero();let p1: Vec3 = vec3(0.0, -6.0, 0.0);let p2: Vec3 = vec3(1.0, 2.0, -2.0);assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan());assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0));assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0));let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0);assert_ne!(p3.normalize(),vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0));assert_eq!(p3.robust_normalize(),vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0));let p4: Vec3 = Vec3::zero();assert!(p4.try_normalize().is_none());let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE);assert!(p5.try_normalize().is_none());let p6: Vec3 = vec3(4.0, 0.0, 3.0);let p7: Vec3 = vec3(3.0, -4.0, 0.0);assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6));assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0));}#[test]pub fn test_min() {let p1: Vec3 = vec3(1.0, 3.0, 5.0);let p2: Vec3 = vec3(2.0, 2.0, -1.0);let result = p1.min(p2);assert_eq!(result, vec3(1.0, 2.0, -1.0));}#[test]pub fn test_max() {let p1: Vec3 = vec3(1.0, 3.0, 5.0);let p2: Vec3 = vec3(2.0, 2.0, -1.0);let result = p1.max(p2);assert_eq!(result, vec3(2.0, 3.0, 5.0));}#[test]pub fn test_clamp() {let p1: Vec3 = vec3(1.0, -1.0, 5.0);let p2: Vec3 = vec3(2.0, 5.0, 10.0);let p3: Vec3 = vec3(-1.0, 2.0, 20.0);let result = p3.clamp(p1, p2);assert_eq!(result, vec3(1.0, 2.0, 10.0));}#[test]pub fn test_typed_scalar_mul() {enum Mm {}enum Cm {}let p1 = super::Vector3D::<f32, Mm>::new(1.0, 2.0, 3.0);let cm_per_mm = Scale::<f32, Mm, Cm>::new(0.1);let result: super::Vector3D<f32, Cm> = p1 * cm_per_mm;assert_eq!(result, vec3(0.1, 0.2, 0.3));}#[test]pub fn test_swizzling() {let p: Vec3 = vec3(1.0, 2.0, 3.0);assert_eq!(p.xy(), vec2(1.0, 2.0));assert_eq!(p.xz(), vec2(1.0, 3.0));assert_eq!(p.yz(), vec2(2.0, 3.0));}#[cfg(feature = "mint")]#[test]pub fn test_mint() {let v1 = Vec3::new(1.0, 3.0, 5.0);let vm: mint::Vector3<_> = v1.into();let v2 = Vec3::from(vm);assert_eq!(v1, v2);}#[test]pub fn test_reflect() {use crate::approxeq::ApproxEq;let a: Vec3 = vec3(1.0, 3.0, 2.0);let n1: Vec3 = vec3(0.0, -1.0, 0.0);let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize();assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0)));assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0)));}#[test]pub fn test_angle_to() {use crate::approxeq::ApproxEq;use core::f32::consts::FRAC_PI_2;let right: Vec3 = vec3(10.0, 0.0, 0.0);let right2: Vec3 = vec3(1.0, 0.0, 0.0);let up: Vec3 = vec3(0.0, -1.0, 0.0);let up_left: Vec3 = vec3(-1.0, -1.0, 0.0);assert!(right.angle_to(right2).get().approx_eq(&0.0));assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2));assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2));assert!(up_left.angle_to(up).get().approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005));}#[test]pub fn test_with_max_length() {use crate::approxeq::ApproxEq;let v1: Vec3 = vec3(0.5, 0.5, 0.0);let v2: Vec3 = vec3(1.0, 0.0, 0.0);let v3: Vec3 = vec3(0.1, 0.2, 0.3);let v4: Vec3 = vec3(2.0, -2.0, 2.0);let v5: Vec3 = vec3(1.0, 2.0, -3.0);let v6: Vec3 = vec3(-1.0, 3.0, 2.0);assert_eq!(v1.with_max_length(1.0), v1);assert_eq!(v2.with_max_length(1.0), v2);assert_eq!(v3.with_max_length(1.0), v3);assert_eq!(v4.with_max_length(10.0), v4);assert_eq!(v5.with_max_length(10.0), v5);assert_eq!(v6.with_max_length(10.0), v6);let v4_clamped = v4.with_max_length(1.0);assert!(v4_clamped.length().approx_eq(&1.0));assert!(v4_clamped.normalize().approx_eq(&v4.normalize()));let v5_clamped = v5.with_max_length(1.5);assert!(v5_clamped.length().approx_eq(&1.5));assert!(v5_clamped.normalize().approx_eq(&v5.normalize()));let v6_clamped = v6.with_max_length(2.5);assert!(v6_clamped.length().approx_eq(&2.5));assert!(v6_clamped.normalize().approx_eq(&v6.normalize()));}#[test]pub fn test_project_onto_vector() {use crate::approxeq::ApproxEq;let v1: Vec3 = vec3(1.0, 2.0, 3.0);let x: Vec3 = vec3(1.0, 0.0, 0.0);let y: Vec3 = vec3(0.0, 1.0, 0.0);let z: Vec3 = vec3(0.0, 0.0, 1.0);assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0)));assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0)));assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0)));assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0)));assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec3(1.0, 0.0, 0.0)));assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1));assert!(v1.project_onto_vector(-v1).approx_eq(&v1));}
}#[cfg(test)]
mod bool_vector {use super::*;use crate::default;type Vec2 = default::Vector2D<f32>;type Vec3 = default::Vector3D<f32>;#[test]fn test_bvec2() {assert_eq!(Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)),bvec2(false, true),);assert_eq!(Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)),bvec2(true, false),);assert_eq!(Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)),bvec2(true, false),);assert_eq!(Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)),bvec2(false, true),);assert!(bvec2(true, true).any());assert!(bvec2(false, true).any());assert!(bvec2(true, false).any());assert!(!bvec2(false, false).any());assert!(bvec2(false, false).none());assert!(bvec2(true, true).all());assert!(!bvec2(false, true).all());assert!(!bvec2(true, false).all());assert!(!bvec2(false, false).all());assert_eq!(bvec2(true, false).not(), bvec2(false, true));assert_eq!(bvec2(true, false).and(bvec2(true, true)),bvec2(true, false));assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true));assert_eq!(bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)),Vec2::new(1.0, 4.0),);}#[test]fn test_bvec3() {assert_eq!(Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)),bvec3(false, false, true),);assert_eq!(Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)),bvec3(true, false, false),);assert_eq!(Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)),bvec3(false, true, false),);assert_eq!(Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)),bvec3(true, false, true),);assert!(bvec3(true, true, false).any());assert!(bvec3(false, true, false).any());assert!(bvec3(true, false, false).any());assert!(!bvec3(false, false, false).any());assert!(bvec3(false, false, false).none());assert!(bvec3(true, true, true).all());assert!(!bvec3(false, true, false).all());assert!(!bvec3(true, false, false).all());assert!(!bvec3(false, false, false).all());assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false));assert_eq!(bvec3(true, false, true).and(bvec3(true, true, false)),bvec3(true, false, false));assert_eq!(bvec3(true, false, false).or(bvec3(true, true, false)),bvec3(true, true, false));assert_eq!(bvec3(true, false, true).select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)),Vec3::new(1.0, 5.0, 3.0),);}
}

二、说明

Vector2D、Vector3D比Point2D、Point3D有更多方法,建议修改为Point2D、Point3D别名,效果更佳。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com