灰狼优化算法(Grey Wolf Optimizer,简称 GWO)是一种群智能优化算法,由澳大利亚格里菲斯大学的 Mirjalii 等人于 2014 年提出。该算法的设计灵感源自灰狼群体的捕食行为,核心思想是模仿灰狼社会的结构与行为模式。
在本次研究中,选用 Excel 格式的股票预测数据。将数据集按照 8 : 1 : 1 的比例,划分为训练集、验证集和测试集。利用 GWO 对决策树进行优化,以实现回归预测,进而提升模型性能。
在代码编写方面,采用模块化结构,依据功能模块清晰划分,具体分为数据准备、参数设置、算法处理以及结果展示等部分。这种结构显著提高了代码的可读性与可维护性。
数据处理流程清晰明确,先对数据进行标准化处理,如 Zscore 标准化,再将其分为训练集、验证集和测试集,这一系列操作有助于确保模型训练的准确性与可靠性。
在结果呈现上,通过绘制 GWO 寻优过程收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,将模型的预测效果直观地展示出来,方便用户理解算法及模型的性能。
平均绝对误差(MAE)
平均相对误差(MAPE)
均方误差(MSE)
均方根误差(RMSE)
R方系数(R2)
代码有中文介绍
算法设计、毕业设计、期刊专利!感兴趣可以联系我。
🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。