欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 新闻 > 社会 > Yolo_v8的安装测试

Yolo_v8的安装测试

2025/4/3 3:06:35 来源:https://blog.csdn.net/quickrubber/article/details/146611155  浏览:    关键词:Yolo_v8的安装测试

前言

    如何安装Python版本的Yolo,有一段时间不用了,Yolo的版本也在不断地发展,所以重新安装了运行了一下,记录了下来,供参考。

一、搭建环境

1.1、创建Pycharm工程

首先创建好一个空白的工程,如下图:

1.2、查看cuda的版本

可以,获知当前电脑安装的cuda版本是12.1。

​​​​​​​1.3、安装cuda版本的Pytorch

先安装mkl

再用已有文件安装cuda版本的Pytorch,如下图:

这个安装当中之所以出现,原有torch版本的卸载问题,是因为工程继承自系统的Python311,已经安装了cpu版本的torch的缘故,这个uninstall后并不影响后续的安装。

我们,可以查看安装后的情况,如下图:

​​​​​​​1.4、一个测试Pytorch的简单程序

说明,cuda版本的Pytorch已经完全可用了。

二、Yolov8的安装

2.1、参考链接

2024最新的YOLOv8安装配置全流程,人人都可以学会的图像识别技术指南-CSDN博客

2.2、安装ultralytics

直接输入:pip install ultralytics

但是,这样做的后果是,安装了最新版本的ultralytics导致torch也要进行更新,于是它就自动这样做了,如下图:

然后,你看,这个torch就已经不支持cuda了,如下图:

不过,这个也不要紧(cpu版本的torch也能用,这不是本文的重点),我们继续:

查看当前的yolo版本,如下图:

三、下载源码开始测试

官网下载源码:https://github.com/ultralytics/ultralytics

如图:

其实,这个版本,已经不是Yolov8,而是Yolov11了。

(是Yolov8还是Yolov11主要决定的是模型文件,而非整体代码,整体代码而言应该是兼容Yolov8和Yolov11的)

先下载下来,然后复制到Pycharm工程中进行测试,如图:

3.1、先做一个预测测试

输入:yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' device=cpu

然后,我们查看这个预测的结果:

显然这个预测是符合我们预测要求的。

3.2、在线coco训练测试

采用在线下载coco包的方式进行测试:

yolo train model = yolov8n.pt data = coco128.yaml epochs = 10 imgsz = 640

训练结束,如下图:

我们可以查看训练的结果:

3.3、离线coco训练测试

将coco128.yaml中的内容进行了修改,删除了其中Download部分,

并将其中的文件和标签的路径修改如下:

并且,将coco集中images和labels复制到对应的位置,如图:

至此,可采用自定义的my_coco128.yaml进行离线训练了,

输入:yolo train model = yolov8n.pt data = my_coco128.yaml epochs = 10 imgsz = 640

运行完毕,如下图:

运行结果是一致的,如下图:

为什么要这样做呢?就是为了后续训练自己打标的图片做准备。

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词