1. 信号概念
信号时Linux系统提供的一种让用户(进程)之间发送异步信息的方式。
用户输入命令,在Shell下启动一个前台进程。用户按下Ctrl-C,,这个键盘输入产生一个硬件中断,被OS获取,解释成信号,发送给目标前台进程,前台进程因为收到信号,进而引起进程退出
一个命令后面加个&可以放到后台运行,Shell可以同时运行一个前台进程和任意多个后台进程,只有前台进程才能接到像 Ctrl-C 这种控制键产生的信号。
2.查看信息 kill -l
用kill -l命令可以察看系统定义的信号列表
每个信号都有一个编号和一个宏定义名称,这些宏定义可以在signal.h中找到,例如其中有定义 #define SIGINT 2。 编号34以上的是实时信号,本章只讨论编号34以下的信号,不讨论实时信号。这些信号各自在什么条件下产生,默认的处理动作是什么,在signal(7)中都有详细说明: man 7 signal。
3. 信号产生
命令产生:kill -6 15687; 15687是进程pid
键盘产生 :ctrl+c产生2号信号和ctrl+\产生三号信号。这是CPU引脚接收键盘输入,硬件寄存器存储该信息,OS就知道去输入缓冲区读取数据,并把ctrl+c解释成2号信号发给当前进程。
系统调用产生:kill函数和raise函数均可产生信号。
#include<iostream>
#include<unistd.h>
#include<sys/signal.h>using namespace std;
//1.我们可以使用kill(pid,signnum)实现mykillvoid myhandler(int signo)
{cout<<"捕获"<<signo<<"号信号"<<endl;
}//2.raise的使用 ,每隔两秒,给自己发送一个二号信号
int main()
{//自定义信号处理方法signal(2,myhandler);while(true){raise(2);sleep(1);}return 0;
}
由软件条件产生信号:SIGPIPE信号实际上就是一种由软件条件产生的信号,当进程在使用管道进行通信时,读端进程将读端关闭,而写端进程还在一直向管道写入数据,那么此时写端进程就会收到SIGPIPE信号进而被操作系统终止。
SIGALRM信号14号信号,由我们设置闹钟alarm(1)产生,让操作系统在seconds秒之后给当前进程发送SIGALRM信号,SIGALRM信号的默认处理动作是终止进程。
#include <iostream>
#include <unistd.h>
#include <signal.h>
using namespace std;int g_val;
void handle(int signnum)
{cout << "g_val is " << g_val << endl;exit(0);
}
int main()
{// 设定14号信号的处理方法signal(14, handle);// 设定一个闹钟alarm(1);while (true){g_val++;}return 0;
}
硬件异常产生信号
硬件异常被硬件以某种方式被硬件检测到并通知内核,然后内核向当前进程发送适当的信号。例如当前进程执行了除以0的指令,CPU的运算单元会产生异常,内核将这个异常解释 为SIGFPE信号发送给进程。再比如当前进程访问了非法内存地址,,MMU会产生异常,内核将这个异常解释为SIGSEGV信号发送给进程。C/C++程序会崩溃,是因为程序当中出现的各种错误最终一定会在硬件层面上有所表现,进而会被操作系统识别到,然后操作系统就会发送相应的信号将当前的进程终止。
#include<iostream>
#include<unistd.h>
#include<signal.h>
using namespace std;void handler(int sig)
{printf("catch a sig : %d\n", sig);
}
//模拟野指针异常
int main()
{signal(SIGSEGV, handler);sleep(1);int *p = NULL;*p = 100;while(1);return 0;
}
以上模拟野指针的代码:不断打印的原因是:在OS不断调度和恢复上下文的过程中,OS不断检测PSW的状态字,并给当前进程发送八号信号。
4.阻塞信号
4.1 信号其他相关常见概念
实际执行信号的处理动作称为信号递达(Delivery)
信号从产生到递达之间的状态,称为信号未决(Pending)。进程可以选择阻塞 (Block )某个信号。
被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
注意,阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作
4.2 在内核中的表示
每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里
4.3. sigset_t
每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略。
4.4 信号集操作函数
#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);
函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有效信号,在使用sigset_ t类型的变量之前,一定要调用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信在使用sigset_ t类型的变量之前,一定要调 用sigemptyset或sigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddset和sigdelset在该信号集中添加或删除某种有效信号
4.5 sigprocmask
sigprocmask函数可以用于读取或更改进程的信号屏蔽字(阻塞信号集),该函数的函数原型如下
int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
返回值:若成功则为0,若出错则为-1
如果oset是非空指针,则读取进程的当前信号屏蔽字通过oset参数传出。如果set是非空指针,则 更改进程的信号屏蔽字,参数how指示如何更改。如果oset和set都是非空指针,则先将原来的信号 屏蔽字备份到oset里,然后根据set和how参数更改信号屏蔽字
假设当前的信号屏蔽字为mask,下表说明了how参数的可选值
注意:用sigprocmask解除对当前若干个未决信号的阻塞,则在sigprocmask函数返回前,至少将其中一个信号递达。也就是sigprocmask处理途中,信号已经递达、
4.6 sigpending
sigpending函数可以用于读取进程的未决信号集放到set中,sigpending函数读取当前进程的未决信号集,并通过set参数传出。该函数调用成功返回0,出错返回-1。该函数的函数原型如下:
int sigpending(sigset_t *set);
5.捕捉信号
5.1内核态和用户态
在进程地址空间中,最上面的地址空间是内核空间,即操作系统的代码,因此每个进程都可以看到操作系统,而我们代码执行系统调用则是OS检测到我们的系统调用请求,将当前工作状态切换成内核态(寄存器的权限标识),然后由OS执行其系统调用方法,然后返回。
5.2 内核如何实现信号的捕捉
如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。
如果信号处理函数的代码是在用户空间的,处理过程比较复杂。
用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。 sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了。
5.3 sigaction
捕捉信号除了用前面用过的signal函数之外,我们还可以使用sigaction函数对信号进行捕捉,sigaction函数可以读取和修改与指定信号相关联的处理动作,该函数调用成功返回0,出错返回-1。sigaction函数的函数原型如下:
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
参数说明:
- signum代表指定信号的编号。
- 若act指针非空,则根据act修改该信号的处理动作。
- 若oldact指针非空,则通过oldact传出该信号原来的处理动作。
参数act和oldact都是结构体指针变量,该结构体的定义如下:
struct sigaction {void(*sa_handler)(int);void(*sa_sigaction)(int, siginfo_t *, void *);sigset_t sa_mask;int sa_flags;void(*sa_restorer)(void);
};
说明:结构体的第一个成员sa_handler就是我们需要指定的自定义处理函数,sa_flags字段包含一些选项,这里直接将sa_flags设置为0即可。
当某个信号的处理函数被调用,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么它会被阻塞到当前处理结束为止。
如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时,自动恢复原来的信号屏蔽字
使用示例:
#include <iostream>
#include <unistd.h>
#include <sys/signal.h>using namespace std;void sigcb(int signo)
{cout<<"捕获"<<signo<<"号信号"<<endl;
}int main()
{struct sigaction newact;newact.sa_flags=0;newact.sa_handler=sigcb;sigaddset(&newact.sa_mask,4); //加入4号信号的屏蔽sigaction(2,&newact,nullptr); //2号信号自定义处理while(true){cout<<"I am runing"<<endl;sleep(2);}return 0;
}
5.4 可重入函数
如下图:main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了。
insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数我们称之为不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称之为可重入(Reentrant)函数。
如果一个函数符合以下条件之一则是不可重入的:
调用了malloc或free,因为malloc也是用全局链表来管理堆的。
调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。
5.5 volatile
volatile是C语言的一个关键字,该关键字的作用是保持内存的可见性。
#include <stdio.h>
#include <signal.h>//volatile int flag = 0;int flag = 0;void handler(int signo)
{printf("get a signal:%d\n", signo);flag = 1;
}
int main()
{signal(2, handler);while (!flag);printf("Proc Normal Quit!\n");return 0;
}
现象:如果在编译代码时用gcc -o sig sig.c -03使得编译器的优化级别最高,此时再运行该代码,就算向进程发生2号信号,该进程也不会终止。
以上代码中的main函数和handler函数是两个独立的执行流,而while循环是在main函数当中的,在编译器编译时只能检测到在main函数中对flag变量的使用。此时编译器检测到在main函数中并没有对flag变量做修改操作,在编译器优化级别较高的时候,就有可能将flag设置进寄存器里面。
面对这种情况,我们就可以使用volatile关键字对flag变量进行修饰,告知编译器,对flag变量的任何操作都必须真实的在内存中进行,即保持了内存的可见性。
5.6 SIGCHLD信号
为了避免出现僵尸进程,父进程需要使用wait或waitpid函数等待子进程结束,父进程可以阻塞等待子进程结束,也可以非阻塞地查询的是否有子进程结束等待清理,即轮询的方式。采用第一种方式,父进程阻塞就不能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一下,程序实现复杂。
其实,子进程在终止时会给父进程发生SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自定义SIGCHLD信号的处理动作,这样父进程就只需专心处理自己的工作,不必关心子进程了,子进程终止时会通知父进程,父进程在信号处理函数中调用wait或waitpid函数清理子进程即可。
下面代码中对SIGCHLD信号进行了捕捉,并将在该信号的处理函数中调用了waitpid函数对子进程进行了清理。
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/wait.h>void handler(int signo)
{printf("get a signal: %d\n", signo);int ret = 0;while ((ret = waitpid(-1, NULL, WNOHANG)) > 0){printf("wait child %d success\n", ret);}
}
int main()
{signal(SIGCHLD, handler);if (fork() == 0){//childprintf("child is running, begin dead: %d\n", getpid());sleep(3);exit(1);}//fatherwhile (1);return 0;
}
SIGCHLD属于普通信号,记录该信号的pending位只有一个,如果在同一时刻有多个子进程同时退出,那么在handler函数当中实际上只清理了一个子进程,因此在使用waitpid函数清理子进程时需要使用while不断进行清理。 使用waitpid函数时,需要设置WNOHANG选项,即非阻塞式等待,否则当所有子进程都已经清理完毕时,由于while循环,会再次调用waitpid函数,此时就会在这里阻塞住。
要想不产生僵尸进程还有另外一种办法:代码加入signal(SIGCHLD, SIG_IGN); 父进程调用signal或sigaction函数将SIGCHLD信号的处理动作设置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用signal或sigaction函数自定义的忽略通常是没有区别的,但这是一个特列。此方法对于Linux可用,但不保证在其他UNIX系统上都可用。