欢迎来到尧图网

客户服务 关于我们

您的位置:首页 > 科技 > 能源 > 【大模型量化】GPTQ量化模型

【大模型量化】GPTQ量化模型

2025/4/19 15:20:32 来源:https://blog.csdn.net/qq_38662930/article/details/144531043  浏览:    关键词:【大模型量化】GPTQ量化模型

20241217
GPTQ量化模型推理时怎么操作?
在GPTQ(一种训练后量化)模型进行推理时,主要步骤如下:

  1. 输入数据准备:将输入数据(如文本或图像)转换为模型可以处理的格式。这通常涉及将输入数据转换为模型的输入层的形状和数据类型。

  2. 量化模型加载:加载已经训练并量化的模型。这包括加载量化后的权重(weights)和可能的量化参数(如scale和zero_point)(占用显存为scale 缓冲)。

  3. 推理阶段数据处理:在推理阶段,输入数据可能需要进行预处理或归一化,以确保与训练时的数据分布一致。这可能包括对输入数据进行缩放或标准化,以适应量化模型的输入范围。

  4. 推理计算:在推理阶段,模型的权重和输入数据将进行计算。这包括矩阵乘法和可能的激活函数计算。在GPTQ中,权重是int8格式的,而输入数据通常是fp16或bf16格式的。由于硬件(如NVIDIA的GPU)支持int8和fp16的混合运算,因此可以直接在不需要反量化的情况下进行计算。

  5. 结果处理:处理推理结果,可能包括将输出转换回原始数据类型或进行后处理,如解码或解释。

总之,GPTQ量化模型在推理时主要通过加载量化模型、准备输入数据、进行推理计算和处理结果来实现高效的推理。由于硬件支持int8和fp16的混合运算,因此可以直接在不需要反量化的情况下进行计算,从而提高推理速度。

QLoRA、GPTQ:模型量化概述
[LLM量化系列]GPTQ & SmoothQuant & AWQ 代码解析

版权声明:

本网仅为发布的内容提供存储空间,不对发表、转载的内容提供任何形式的保证。凡本网注明“来源:XXX网络”的作品,均转载自其它媒体,著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

我们尊重并感谢每一位作者,均已注明文章来源和作者。如因作品内容、版权或其它问题,请及时与我们联系,联系邮箱:809451989@qq.com,投稿邮箱:809451989@qq.com

热搜词