这是新增识别物体训练前的一个预处理过程。你的额外标注要建立在模型已经具备的识别能力的基础上。
0.参考资料:
1.主要参考源:
Tutorial: Importing Local YOLO Pre-Annotated Images to Label Studio | Label Studio
2.备用的label-studio-converter文档:
GitHub - HumanSignal/label-studio-converter: Tools for converting Label Studio annotations into common dataset formats
1.安装label转换工具
pip install label-studio-converter
2.将原有的coco数据集放在C:根目录下:例如:

2.1 classes.txt的内容为
classes的列表
person
bicycle
car
2.2 image, labels不再拆分为训练和验证
3.转换
注意,命令行中,images在classes.txt文件所在目录中单独列出,然后, -i的参数是 classes.txt所在目录。
C:\Users\twica>label-studio-converter import yolo -i /dataset/before_import -o output.json --image-root-url "/data/local
-files/?d=dataset/before_import/images"
INFO:root:Reading YOLO notes and categories from C:\dataset\before_import
INFO:root:Found 81 categories
INFO:root:Converting labels from C:\dataset\before_import\labels
INFO:root:image extensions->, ['.jpg']
INFO:root:Saving Label Studio JSON to C:\Users\twica\output.json1. Create a new project in Label Studio
2. Use Labeling Config from "C:\Users\twica\output.label_config.xml"
3. Setup serving for images
E.g. you can use Local Storage (or others):
https://labelstud.io/guide/storage.html#Local-storage
See tutorial here:
https://github.com/HumanSignal/label-studio-converter/tree/master?tab=readme-ov-file#yolo-to-label-studio-converter4. Import "C:\Users\twica\output.json" to the project
4.导入
4.1 导入label-config
这个需要把output.label_config.xml,手工粘贴进来
4.2 设置工程的image src源

4.3 import
4.4 导入后